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1. A MATLAB PRIMER 

1.1 Introduction: 

MATLAB is a mathematical software package, which is used 

extensively in academia and industry and stands for MATrix 

LABoratory. It has become the most fundamental and indispensable tool 

for work at the world’s most innovative technology companies, 

government research labs, financial situations and at more than 3,500 

universities. It was developed by cleve moler, a professor of mathematics 

and is available as a product, for purchase, from the mathworks Inc., 

USA. Cleve Moler and Jack little founded the Mathworks Inc in 1984. 

Over last 20 years(2 decades), MATLAB has evolved into a much 

powerful and versatile package, useful for a wide variety of academic, 

research and industrial applications. 

 

1.2 Why MATLAB? 

i. As a matrix based system, it is a great tool for simulation and data 

analysis. 

ii. It is a simple, powerful and easy to learn programming language as 

it provides extensive online help. 

iii. Unlike other high level programming languages like FORTRAN, C 

etc., it doesn’t require any variable declaration and dimension 

statements at the beginning. 

iv. It has thousands of built in functions for scientific and technical 

computation, and hence the MATLAB programs, written for 

solving complex problems, take a fraction of time and look very 



 
 
 

small, in general, when compared to the codes written using other 

high-level languages. 

v. It provides the most optimized code, which is extremely quick, 

especially for matrix based operations. 

vi. It also enables the users to write their own functions for easy 

customization. 

vii. It is an interrupted language and hence we can execute the 

commands by typing them at the command prompt one by one and 

see the results immediately. 

viii. Since MATLAB uses matrix notation, it replaces several ‘for’ 

loops, which are usually found in C type of codes. 

ix. MATLAB is an indispensable Graphical User Interface(GUI) tool, 

especially for ECE graduates, as they can use it for proper 

understanding of concepts in several prescribed basic and advanced 

subjects such as 

 Mathematics 

 Signals and systems 

 Probability Theory and stochastic processes 

 Control systems 

 VLSI design 

 Embedded systems 

 Analog communications 

 Wireless communications 

 Artificial Neural Networks etc. 

 

 

 



 
 
 

1.3 GETTING STARTED WITH MATLAB 

1.3.1 LAUNCHING MATLAB 

 If MATLAB is installed on your computer, you can possibly find a 

MATLAB icon as a shortcut on your desktop of windows based system.  

If not, click 'start' button, then go to programs and their you can find the 

MATLAB application and MATLAB icon.  Double click on the 

MATLAB icon to launch the application. 

 A new window, called MATLAB desktop, consisting of several 

small windows, tool bars and other shortcut icons, opens up and you are 

ready to begin MATLAB programming. 

 

1.3.2 MATLAB DESKTOP LAYOUT 

 When the MATLAB is launched for the first time, the MATLAB 

desktop appears with the default layout, where you can change the 

configuration to suit your needs, by deselecting the selected options and 

selecting other tools, using the desktop pull down menu on toolbar.  All 

the selected items, under the desktop submenu appear in the MATLAB 

desktop. 

 

1.3.3 COMMAND WINDOW 

 This is a place where you can enter all the MATLAB commands at 

the "Command Prompt" (>>).  When the command is typed at the 

command prompt and 'Enter' key is pressed or clicked, MATLAB 

executes those commands and displays the result of each operation 



 
 
 

performed.  Note that the command window is separated by using the 

'undock' button. 

 

1.3.4 THE COMMAND HISTORY WINDOW 

 In this window, we can see all the commands that have been 

entered earlier.  Of course, the results of operations are not displayed 

here.  From here, you can select any command by just clicking once on 

the command.  Once selected, you can either delete it by using 'del' key or 

copy it using 'Edit, Copy (Ctrl C)' and paste it either in command window 

of MATLAB or in a separate document by using 'Edit, Paste (Ctrl V)' 

commands as we do in any word processing documents.  The other thing 

is, when you double click on the command of command history, its gets 

executed in the command window.  This feature is extremely useful it 

you wish to execute a command repeatedly, as you need not type it again 

at the command prompt. 

 

1.3.5 THE CURRENT DIRECTORY WINDOW 

 This window displays the list of all the files and folders under the 

current directory, which happens to be the 'work' (folders under the C) 

sub-directory, by default, under the MATLAB root directory.  Since the 

'MATLAB' directory will be normally be in the hard disk C:\ in your 

system, where all the application software packages are stored, you 

should never use the default directory for saving your MATLAB files, 

you will lose all your files when you format it.  Assuming that hard disk 

is partitioned into C:\, D:\, E:\, it is always safe to either use E:\ or D:\ 



 
 
 

drives for saving your new files in a new folder created specially for 

MATLAB files. 

 

1.3.6 CHANGING THE CURRENT DIRECTORY 

 You can even create a new directory, to do so type the command 

'path tool' at the command prompt.  Then a new window called 'set path' 

window opens as shown and that shows all the directories and sub-

directories which are visible to MATLAB to create a new folder and  to 

make it visible to MATLAB, follow the following steps / below steps. 

 

 Click on ‘Add folder’. A new window called ‘Browse for folder 

opens up. 

 Click on up and down arrow buttons until the 'E' drive appears 

select it by clicking once on it. 

 Click on 'Make new folder' and type 'folder name' in the folder 

window and say OK. 

 The set path window now should look like the one observe that the 

new directory is added to the MATLAB search path. 

 Click on 'save' and then 'close' the set path window disappears and 

the new path is saved permanently, until you delete it using the 

'remove' button. 

 Type cd E:\ slab at the command prompt and press 'Enter', observe 

that the current directory has been changed to the new path.  Now 

you can start creating new files. 

 



 
 
 

Each time you launch 'MATLAB', ensure first that the current 

directory is the one that is your own, which can be done either by typing 

the command at the command prompt. 

 

1.4 MATLAB EDITOR AND DEBUGGER 

 MATLAB provides powerful tools for creating, editing and 

debugging files.  Debugging is a process where the syntax errors in a 

code are removed.  The MATLAB Editor and Debugger allows users to 

 Create a new MATLAB file, called a '.m' file, in to which the 

MATLAB commands, comments and data are entered, using 

different colours, for easy identification of strings and matching of 

if-else statements, etc. for highlighting the syntax. 

 Edit all that is written into the file using the usual commands such 

as select, cut, copy, paste, find, replace etc. 

 Import data, such as ASCII text or a huge matrix, from an external 

environment into the file. 

 Save the file in a chosen director. 

 Debug the MATLAB commands by running the program either 

line by line in a step mode or run a portion of the program by 

setting break points. 

 Open an existing .m file for a possible modification. 

 

1.5 HOW TO CREATE A MATLAB FILE 

We get couple of ways in which we can create a MATLAB .m file among 

them, using MATLAB Editor and Debugger and using MATLAB 

command window are 2 processes. 



 
 
 

 

1.5.1 USING MATLAB EDITOR AND DEBUGGER 

 After launching MATLAB and changing the current directory, now 

use the toolbar and select file New M-file to open the MATLAB 

editor and debugger.  Enter the program that whatever you want to 

execute, then save the file with file  save commands by entering the 

desired file name or what ever the file name you want to give. Ensure that 

the file is saved in the directory created by you, then MATLAB editor 

window appears.  

 Now, type the file name at command prompt MATLAB runs the 

file and displays the result.  MATLAB in this case acts as a 

"COMPILER" and the file name now becomes a function and now can be 

called by another .m file by including this word as one of the commands 

in a MATLAB program, with little modifications. 

 

1.5.2 USING MATLAB COMMAND WINDOW 

 Best way for a beginner is to use the command window to enter 

each MATLAB command at the command prompt with a carriage return 

at the end, observe carefully the difference that the result of each 

statement is now displayed immediately on the screen, in this case, 

MATLAB acts as a 'Interpreter'. 

 Now type all the commands that you want to execute and now 

select all the edited portion and then 'right click' on the selected portion 

and choose 'create M-file', which will open the file in the MATLAB 



 
 
 

editor window save the file with file  save commands by entering the 

filename that which you want to give. 

 A few observations on the MATLAB code that you executed are 

worth mentioning here. Blank spaces around operators such as -, :, and ( ) 

are optional, but they improve readability with respect to case, MATLAB 

is a case sensitive and, therefore requires an exact match for variable 

names for example, if you have a variable 'a', you cannot refer to that 

variable as 'A'.  Any statement that starts with a % symbol is treated as a 

comment and ignored during the execution. Comments are extremely 

important not only for other readers to understand your program but also 

for you to comprehend it at later stages output does not appear with 

syntax highlighting, except for errors. 

 Normally, every MATLAB statement ends with a semi-colon (;) 

which serves two purpose.  Your can enter any number of MATLAB 

statements in the same line, if each statements ends with a semicolon, it 

acts as an separator the semicolon is also used to suppress the immediate 

display of output on screen, when a statement is executed, for example, 

when MATLAB is used in interpreter mode, many a time, it will be 

irritating to see a huge amount of data rolling out of screen. 

 

1.6 HOW TO GET HELP 

 There are several ways with which you can get help, in case you 

are stuck with problem. 

 Press F1 key on your keyboard or click on the ? symbol on the 

toolbar to open a separate MATLAB comes with an extensive set 

of documents, available under the category 'Documentation set' by 



 
 
 

clicking on an appropriate link, such as 'getting started', 'user 

guides', you can get all the information that is needed. 

 Click on the 'search' button in the 'Help Navigator' window and 

search for the desired information by typing or keyboard. 

 Click on the ‘Index' button in the 'Help Navigator' and type a word 

in the 'search index' for rectangular bar. 

 Click on the demos button in the 'Help Navigator' window, where 

there is an extensive set of demos on several topics, select a demo 

and click on 'Run this demo'. 

 Type 'Help' at the command prompt in the command window.  A 

listing of all the topics will be rolled out on the screen, click on any 

one of those links. 

 Since MATLAB is a very popular software used all over the globe. 

Several users have established some 'user groups' for exchange of 

idea between the users. The most prominent of them is the one 

which is maintained by the math works. Inc. themselves at 

http://www.mathworks.com/matlabcentral/. There are several 

others that you can search on the internet. 

 



 
 
 

2.   INTRODUCTION TO VECTORS AND MATRICES 

2.1 BASICS 

 MATLAB is a matrix laboratory.  It essentially works with only 

one kind of object i.e., a matric. 

 A scalar, which is a single number is a |x| matrix. 

 MATLAB is extremely fast, especially for matrix operations. 

 

2.1.1 VARIABLES 

 A variable is a name that is assigned to a value stored in the 

computer’s memory.  Here the variable names must begin with a letter 

and may be followed by any combination of letters, digits and 

underscores.  Predefined function names cannot be used as variable name  

in our program. MATLAB stores variables in a part of memory called the 

workspace. If a variable already exists, the previous value is overwritten 

so as to store the recent value. 

 Variables created at the MATLAB command prompt on in an M-

file exist until we clear them using clear command. 

Example 

>> x = 3 + 4 

This creates a variable ‘x’ and assigns a value 7 to it.  If we type x, 

without a semicolon, the following displays 

>>x 

x = 7 

The MATLAB statements are usually of the form. 



 
 
 

Variable = expression 

Variables are case-sensitive i.e. 'A' and 'a' are not same variables. 

 

2.1.2 EXPRESSIONS AND STATEMENTS 

 An expression may consist of numbers, variable names and some 

pre-defined functions such as sin, cos, log etc. arithmetic operators such 

as +, -, / etc. relational operators such as <, > etc. and some special 

characters such as space, c, semicolon, [ ] etc. 

 Evaluation of expression produces a matrix. 

Example 

>> 34/7 

Ans =  

4.8571 

>>log (12) 

Ans = 

2.4849 

If a variable is not assigned to an expression, MATLAB by default 

creates a variable with the name 'ans' which stands answer and result of 

expression is assigned to it. 

 

THE ARITHMETIC AND RELATIONAL OPERATORS OF 

MATLAB 



 
 
 

ARITHMETIC 

OPERATOR 
OPERATION  

RELATIONAL 

OPERATOR 
OPERATION 

+ Addition  = = Equal 

- Subtraction  ~ = Not Equal 

* 
Matrix 

multiplication 
 < Less than 

.* Array multiplication  < = Less than or equal to 

/ Division  > Greater than 

^ Matrix power  > = 
Greater than or equal 

to 

.^ Array power    

' Transpose    

 

 

 

Examples 

>> y = sqrt (17) 

y= 

4.1231 

>>a = 3 + 4*j; 

>>b = abs (a) 



 
 
 

b = 

5. 

Here a is a complex variable indicated by special 

Functions i and j.  It can also be declared as 

>>p = 2; 

>>q = 7; 

>>r = complex (p, q) 

R = 

2.0000 + 7.0000i 

 The relational operators perform element by element comparison 

between two variables.  They return a logical value with the result set to 

true ( '1' ) where the relation is true and false         ( '0' ) where it is not. 

 For example, the expression p > q will produce an output '0' since p 

is less than q, while         p < q will produce a '1' because the condition is 

satisfied. 

>> p > q 

ans = 

0 

>> p < q 

ans = 

1 



 
 
 

MATLAB doesn’t display the result, when the last character is a 

semicolon (;), for example 

>>y = sqrt (17); 

This feature can be used to hide all the unwanted intermediate results. 

 

SOME PREDIFINED FUNCTIONS OF MATLAB 

ELEMENTARY FUNCTIONS  
COMPLEX VARIABLE 

FUNCTIONS 

Exp Exponential  Abs Absolute value 

Log Natural Logarithm  Angle Phase angle 

Log10 Common Logarithm  Complex Form complex number 

Sqrt Square root  Conj Conjugate 

n
th

 root n
th

 root   Real Real part 

Sin Sine  Imag Imaginary part 

Cos Cosine  i -1 

 

2.1.3 WORKSPACE 

 To list the variables, including ans, in the workspace type who and 

then press enter 

>> who 

Your variables are: 



 
 
 

a ans b x y 

To see the size of the current variables, we can use whos, which gives 

>> whos 

Name Size Bytes Class 

a 1 x 1 16 Double array (complex) 

ans 1 x 1 8 Double array 

b 1 x 1 8 Double array 

x 1 x 1 8 Double array 

y 1 x 1 8 Double array 

 

Grand total is 5 elements using 48 bytes 

  

The amount of remaining free memory depends on the total amount 

available in the system and varies from computer to computer.  

Unnecessary variables can be erased from memory using the clear 

command.  When we exit MATLAB using the quit or exit, all the 

variables are automatically erased. 

 

2.2 VECTORS 

2.2.1 ROW VECTOR OF ARBITRARY ELEMENTS 

 A row vector of arbitrary elements, such as [2 7 0 1 5] can be 

defined by 



 
 
 

>>a = [2 7 0 1 5] 

a = 

2 7 0 1 5 

It creates a 1 x 5 vector and assigns it to the variables 'a'.  The elements 

have to be separated by spaces or commas like a = [2, 7, 0, 1, 5].  

Individual elements of a vector can be accessed by enclosing their 

subscripts in parenthesis. 

For example, a(3) will be 0 and a(2) is assigned 7.  Subscripts always 

start with a 1 in MATLAB. 

>> a (3) 

ans = 

0 

>> a(2) 

ans = 

7 

We can expand the vector by adding additional elements, 

For example, 

>>a(6) = 3 

a = 

2 7 0 1 5 3 

will add 6
th

 element to a 

>> a(8) = 4 



 
 
 

a = 

2 7 0 1 5 3 0 4 

will not only add on 8
th

 element but also include 0 as 7
th

 element by 

default. 

A new expanded matrix can be formed by using concatenation.  For 

example 

>> c = [12 15]; 

>> d = [a c] 

d = 

2 7 0 1 5 3 0 4 12 15 

will give a new 1 x 2 vector c to previously defined 1 x 8 vector c to 

create a 1 x 10 vector d. 

 

2.2.2 ROW VECTOR OF EQUALLY SPACED ELEMENTS 

 

A vector of equally spaced elements can easily be created by using the 

most frequently used and very powerful colon (: operator. 

>>b = 3 : 2 : 11 

b = 

3 5 7 9 11 

Creates a 1 x 5 vector and assigns it to the variable b. 

The middle number defines the increment i.e., 2. 



 
 
 

>> c = 0 : 10 

 

c = 

0 1 2 3 4 5 6 7 8 9 10 

will generate a 11 element vector c with a default unity spacing between 

elements.  The first, middle and last numbers can also be fractions. 

>> n = 0.1 : 0.1 : 0.5; 

will result in 41 – element raw vector, with initial value of 0.1 an 

increment of 0.01 and final value of 0.5. 

>> t = 0.5 : -0.1 : 0.2 

t = 

0.5000  0.4000  0.3000  0.2000 

 

The increment can also be a negative number. 

 A partial list of elements in a vector can be seen using the subscript 

rotation and the colon operator as 

>> t (2 : 3) 

ans = 

0.4000  0.3000 

2.2.3 COLUMN VECTOR OF ARBITRARY ELEMENTS 

The following are various methods of creating the column vectors 



 
 
 

>> a = [1 2 3]; 

>> b = a
1
 

Creates a 3 x 1 column vector, by transposing the row vector  

'a' as 

b = 

1 

2 

3 

If the elements in a row vector are separated by semicolons as in 

>> c = [1; 4; 6] 

c = 

1 

4 

6 

a  3x1 column vector is created, here c (2) = 4 and c(3) = 6. 

Expansion of column vector can also be done by concatenation 

>>d = [b; c] 

d = 

1 

2 



 
 
 

3 

4 

5 

6 

After vector c has been concatenated to vector b then the resultant vector 

is d is a 6x1 column vector. 

 

2.2.4 COLUMN VECTOR OF EQUALLY SPACED ELEMENTS 

 A column vector of equally spaced elements can be created using 

the transpose operator as 

>> t = [0 : 2 ; 10]
1
 

t = 

0 

2 

4 

6 

8 

10 

 

2.2.5 OPERATIONS ON VECTORS 

Let us consider two simple vectors 



 
 
 

a = [5 2 1 4 3]    b = [8 6 7] 

The results of each specified operations on one of the above vectors are 

SOME MATLAB COMMANDS RELATED TO VECTORS 

MATLAB 

FUNCTION 
MEANING EXAMPLE 

Min Smallest element Min (a) = 1 

Max Largest element Max (b) = 8 

Length Total number of elements Length (b) = 3 

Sum Sum of all elements Sum (b) = 21 

Prod Product of all elements Prod (a) = 120 

Mean Average value Mean (a) = 3 

Std Standard deviation Std (a) = 1.5811 

Median Median value Median (b) = 7 

 

Some more operations on vectors are 

Sorting Operation 

>> sort (a, 'descend') 

ans = 

5 4 3 2 1 

If we simply type sort (a), the elements will be, by default sorted in 

ascending order. 



 
 
 

 

Addition Operation 

To add the two vectors a and b, their sizes to be same. 

>>a + b 

? ? ? Error using = = > plus 

Matrix dimensions must agree 

The length of vector b can be made equal to length of vector a by 

concatenation method 

 

Example: 

>> c = [0 0]; 

>> b 

8 6 7 

>> bnew = [b  c] 

8 6 7 0 0 

>> a = [5 2 1 4 3] 

a = 

5 2 1 4 3 

>> d = a + bnew 

d =13 8 8 4 3 

Array Power Operation 



 
 
 

All the elements of a vector can be raised to a power using the array 

power (.^) operator of MATLAB. 

 

Example: 

>> a = 1 : 7 

a = 

1 2 3 4 5 6 7 

>> b = a .^ 2 

b = 

1 4 9 16 25 36 49 

Array Multiplication Operation 

 The element by element multiplication of two vectors can be done 

using the array multiplication operation let us multiply the two vectors a 

and d, in the addition example, to get the following result. 

>> a . * d 

ans = 

65  16  8  16  9 

This operation is used very frequently and it has three different names: 

inner product, scalar product on dot product.  Removing the 'dot' in above 

expression will result in an error due to mismatch in the dimensions.  We 

can do the multiplication by transposing d vector or a vector. 

>> a * d
1
 



 
 
 

ans = 

1 1 4 

>> a
1
 * d 

ans = 

65 40 40 20 15 

26 16 16 8 6 

13 8 8 4 3  

52 32 32 16 12 

39 24 24 12 9 

 

2.3 MATRICES 

Matrix operations are most fundamental to MATLAB.  We can enter 

matrices in several ways. 

 Enter an explicit list of elements 

 Load matrices from external data files, using the 'load' command. 

 Generate matrices using built-in functions. 

 

The elements of a row are to be separated with blank or commas.  

A semicolon is used to indicate the end of each row.  The entire list is 

surrounded by square bracket []. 

A matrix can be entered by typing an explicit list 1 elements row 

by row. 



 
 
 

>> a = [1 2 3; 4 5 6; 7 8 9] 

a = 

1 2 3 

4 5 6 

7 8 9 

Creates a 3x3 matrix and assigns it to a variable a.  Individual elements 

can be referred by using parentheses. For example a(2, 3) refers to the 

element in the 2
nd

 row and 3
rd

 column and a(3, 2) will be 8. 

>> a (2, 3) 

ans = 

6 

>> a (3, 2) 

ans = 

0 

 

Matrices can also be generated by using special built-in functions. 

 

MATRIX FUNCTIONS OF MATLAB 

Eye Identity matrix 

Zeros Matrix of Zeros 



 
 
 

Ones Matrix of Ones 

Diag Diagonal Matrix 

Rand Matrix with random elements 

Trice Upper triangular part of a matrix 

Tril Lower triangular part of a matrix 

Magic Magic square matrix 

Size Size of matrix 

Length Length of vector 

Sum Sum of elements 

Inv Inverse of matrix 

Eig Eigen value 

Rank Rank of matrix 

Det Determinant of matrix 

Norm Norm of matrix 

Poly Characteristic polynomial 

Trace Trace of matrix 

Prod Product of elements 

Mean Average value 

 

 



 
 
 

Example 

>> b = eye (3) 

b = 

1 0 0  

0 1 0 

0 0 1 

 

Creates a 3x3 identity matrix 

>> c = rand (4, 6) 

c =0.4565  0.6154  0.1763  0.4103 

 0.8132  0.1987 

0.0185  0.7919  0.4057  0.8936 

 0.0099  0.6038 

0.8214  0.9218  0.9355  0.0579 

 0.1389  0.2722 

0.4447  0.7382  0.9169  0.3529 

 0.2028  0.1988 

 

 

Generates a 4x6 matrix of random numbers between 0 and 1. 

>> d = ones (4, 3) 

 



 
 
 

d = 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

Creates a 4x3 matrix of elements which are all ones. 

>> e = zeros (3, 6) 

e = 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Creates a 3x6 matrix of elements which are all zeros. 

2.3.1 OPERATIONS ON MATRICES 

Size:The size of a matrix can be known using the size command [M, N] = 

size (X), for an M-by-N matrix X, returns the two-element row vector D 

= [M, N]. 

Containing the number of rows and columns in the matrix, for example 

>> e = zeros (3, 6); 

>> [M, N] = size (e)  

 

 



 
 
 

M =  

3 

N = 

6 

 Generating more than one output, with the execution of a single 

command, is one of the distinguishing features of MATLAB.  In this 

case, it produced two output M & N, which can be used, for example in 

loops. 

Sum, Transpose and Diagonal 

 Let us create a 3x3 magic square matrix, for example, which has 

some interesting properties.  The command magic (N) generates as NxN 

square matrix which has all the integers, from 1 to N
2
. The sum of all the 

elements, along each row, each column and also along each of the two 

diagonals is equal is known as magic square. 

>> a = magic (3) 

a = 

8 1 6 

3 5 7 

4 9 2 

The above example generates a 3x3 square matrix.  It has all different 

integers from 1 to 9.  The command sum calculates the sum of elements 

in each column. 

>> sum (a) 



 
 
 

ans = 

15 15 15 

The command diag extracts the principle diagonal. 

>> diag (a) 

ans = 

8 

5 

2 

>>sum (diag (a)) 

 

ans = 

15 

The sum of diagonal elements is 15.  Let us transpose the matrix to 

interchange row and columns to recalculate the sum of each row of 

matrix a, which is now the column of matrix b. 

>> b = a
1
 

b = 

8 3 4 

1 5 9 

6 7 2 

>> sum (b) 



 
 
 

ans = 

15 15 15 

MATLAB doesn’t have a special function to extract the anti-diagonal 

elements.  But it provides a very useful function fliplr to turn the matrix 

from left to right, which in turn converts the anti-diagonal to principle 

diagonal.  Now, we can calculate its sum easily. 

>> c = fliplr (a) 

c = 

6 1 8 

7 5 3 

2 9 4 

>> diag (c) 

ans = 

6  

5 

4 

We have extracted the anti-diagonal of the original matrix a. 

>> sum (diag (c)) 

ans = 

15 



 
 
 

 The unique feature of the magic square matrix is the of its elements 

of each row, each column, principle diagonal and anti-diagonal is same.  

Thus, it is called a magic square matrix. 

 

Determinant and Inverse 

 The command det(x) finds the determinant of the square matrix x.  

Let us calculate the determinant of the magic square matrix. 

>> det (a) 

ans = 

-360 

 Since, the determinant is non-zero, the matrix can be inverted.  Let 

us now calculate its inverse, using the command inv. 

>> inv (a) 

ans = 

0.1472  -0.1444 0.0639 

-0.0611 0.0222  0.1056 

-0.0194 0.1889  -0.1028 

 The above result can be verified whether it is correct or not, from 

the knowledge that the multiplication of a matrix with its inverse should 

result in an identity matrix.  

(a. a-1
 = I) 

>> inv (a) * a. 



 
 
 

ans = 

1.0000 0  -0.0000 

0  1.0000  0 

0  0.0000  1.0000 

The appearance of 0, 0.0000 & -0.0000 at the above stage are all 

same, it is because of finite precision of the processor being used in 

the computer. 

Multiplication By A Scalar 

 Each element of a matrix can be multiplied by a scalar.  Let us 

multiply each element of the 3x3 magic square matrix by 2. 

>> a = magic (3) 

a = 

8 1 6 

3 5 7 

4 9 2 

>> b = 2*a 

b = 

16 2 12 

6 10 14 

8 18 4 

 



 
 
 

Matrix Addition 

 Since, the above matrices a & b are of same dimensions, we can 

add them, element by element, with simple expression like a + b. 

>> c = a + b 

c = 

24 3 18 

9 15 21  

12 27 6 

 

2.3.2 SUB MATRICES 

 A portion of the matrix can be extracted using the most powerful 

colon operator of MATLAB.  Now, consider the example of 4x5 matrix 

of random elements for the study of sub-matrices. 

>> a = rand (4, 5) 

a = 

0.4103  0.8132  0.1987  0.0153 

 0.0460 

0.8936  0.0099  0.6038  0.7468 

 0.4186 

0.0579  0.1389  0.2722  0.4451 

 0.8462 



 
 
 

0.3529  0.2028  0.1988  0.9318 

 0.5252 

 

 

The 2
nd

, 3
rd

 & 4
th

 columns of the matrix can be extracted by the following 

command. 

>> a (: , 2 : 4 ) 

ans = 

0.8132  0.1987  0.0153  

0.0099  0.6038  0.7468 

0.1389  0.2722  0.4451 

0.2028  0.1988  0.9318 

The colon by itself refers to all the elements in a row or column a matrix.  

Similarly the 3
rd

 and 4
th

 rows and all columns of the matrix can be 

extracted. 

>> a (3 : 4, :) 

ans = 

0.0579  0.1389  0.2722  0.4451 

 0.8462 

0.3529  0.2028  0.1988  0.9318 

 0.5252 



 
 
 

The command a(2 : 3, 2 : 4) takes out the elements in the  2
nd

 to 3
rd

 row 

and 2
nd

 to 4
th

 columns. 

>> a(2:3, 2:4) 

ans = 

0.0099  0.6038  0.7468 

0.1389  0.2722  0.4451 

NOTE: 

 The rows or columns to be extracted need not be continuous.  In 

order to extract the element on the 1
st
 row and 4

th
 row of the 2

nd
 and 5

th
 

columns, we need to type the command using vector notation. 

>> a([1  4], [2  5]) 

ans = 

0.8132  0.4660 

0.2028  0.5252 

The keyword 'end' refers to the last row or column.  For example, 

>> a (end, :) 

ans = 

0.3529  0.2028  0.1988  0.9318 

 0.5252 

Extracts the last row of the matrix, the last column of the matrix with a (:, 

end) command, can also be extracted.  We can delete rows and columns 



 
 
 

of a matrix using a null matrix, which is just an empty pair of square 

brackets, for example, to delete the 3
rd

 column of matrix a, we can use 

>>a (:, 3) = [ ] 

a = 

0.4103  0.8132  0.0153  0.4660 

0.8936  0.0099  0.7468  0.4186 

0.0579  0.1389  0.4451  0.8462 

0.3529  0.2028  0.9318  0.5252 

The resultant matrix is now a 4x4 matrix, after 3
rd

 column has been 

deleted. 

 

2.3.3 LOOPS AND VECTORIZATION 

 MATLAB provides two loop statement, the for loop &  the while 

loop, using which a group of statements can be repeatedly executed fixed 

number of times, in a controlled fashion.  It also has two flow control 

statement, the if-else end and the switch-case, to control the flow of the 

program.  The break, return and continue commands are used in close 

association with the loop and flow control statements to either terminate 

the loop process or pas the control to the next iteration.  We may be 

tempted to write the MATLAB code the way we would write a program 

in FORTRAN or C, in which case our code may be painfully slow.  

Hence, it is strongly recommended not to do so.  It is always better to 

allow MATLAB to process the whole vectors or matrices at once rather 

than using loops. 



 
 
 

 The process of converting a for loop to vector function is referred 

to as vectorization.  The difference in processing time between a 

vectorized code and a code that uses a for loop can be substantial.  The 

power of MATLAB is realized when the concept of vectorization is 

utilized. 

 Vectorized code takes advantage, wherever possible of operations 

involving data stored as vectors.  The only way to make MATLAB 

programs run faster is to vectorized the algorithms we use in writing the 

programs.  While the total programming languages might use 'for loops' 

or 'while loops', MATLAB can use vector or matrix operations.  Although 

loop statements are available in MATLAB, they should be sparingly used 

because they are computationally inefficient.  This can be  proved by the 

following example that involves creating a table of logarithms. 

>>tic 

>>x = 0.01; 

>>for k = 1 : 1000 

Y(k) = log 10(x); 

X = x+0.01 

End 

>>toc 

 The above code computer log 10(x) for 1000 value of x beginning 

with 0.01 and incremented each time by the same value.  It also measures 

the total time taken for doing this job.  Now, create a file consisting of the 

above program and call it at the command prompt by typing the 'file 

name' as otherwise the typing time also will be included, leading to 



 
 
 

wrong results.  When we run the above code, the following message is 

displayed on the screen.  Elapsed time is 0.062000 seconds. 

A vectorized version of the same code is  

>> tic 

>> x = 0.01 : 0.01; 10; 

>> y = long 10(x) 

>> toc 

Elapsed time is 0.031000 seconds. 

 The vectorized version of the code takes just half the time and 

hence is the most preferred way.  Hence it is always advised to find a 

vector function that will accomplish the same result as that of a for loop.  

The processing time may be different in the computer, depending on the 

processor configuration being used. 

 The tic and toc functions determine the time taken to run a series of 

commands in MATLAB and display the time in seconds, while tic starts a 

stop watch times toc prints the elapsed time, since tic was used.  These 

two functions work together to measure elapsed time.  We need to place 

the entire MATLAB code, for which the execution time needs to be 

measured between tic and toc. 

 

2.4 PLOTTING GRAPHS 

 MATLAB has excellent graphic capabilities for plotting graphs.  It 

provides simple but high level graphics commands for displaying data in 

the form of line plots in rectangular and polar co-ordinates, bar and 



 
 
 

histogram graphs, contour plots, mesh and surface plots in two and three 

dimensions.  In addition, precisely we can control color, shading, axis 

labeling and the general appearance of graphs.  MATLAB can also be 

used for displaying several types of images such as indexed images, 

intensive images and true color images, movies with animation cal also 

be created. 

 We can type the demo at the command prompt and select graphics 

under the MATLAB option to see a visual demonstration of an extensive 

set of demos in order to understand the graphic capabilities of MATLAB 

for plotting 2-D graphs, in this section.  The table shown below 

summarizes a few frequently used graphics commands of MATLAB. 

SOME GRAPHICS COMMANDS OF MATLAB 

MATLAB COMMAND EXPLANATION 

Plot (x, y) Plots vector y versus vector x 

Stem (x, y) Discrete sequence or ‘stem’ plot 

Sub Plot (m, n, p) 

Divides the graph into m-by-n portions, 

selects the        p-th portion for current 

plot 

Bar (x) Bar graph of a vector or matrix 

Hist (x) Histogram of elements of vector x. 

Axis ([xmin. Xmax. Ymin. 

Ymax]) 
Sets scaling for x - & y- axis 

X label (‘text’) Adds a label to x – axis 



 
 
 

Y label (‘text’) Adds a label to y – axis 

Legend (‘text’) Displays a legend on the current graph 

Title Adds a title to the current graph. 

Grid 
Adds a major grid lines to the current 

axis. 

Log log (x, y) 
Plots xy graph using log scale for x & y 

axes 

Semi log x (x, y) Plots xy graph using log scale for x axis 

Semilog y (x, y) Plots xy graph using log scale for y axis 

 

2.4.1 CREATING A PLOT 

 Let us create, for example, a line graph of Sin(t) and Cos(t) for all t 

values ranging between 0 to 2 , with an increment of /100.  We can use 

the notation to create a row vector t of equally spaced elements. 

>> t = 0 : pi/100 : 2 * pi; 

 We can check the length of this vector to be 201.  Now, without 

using the loop statements, we can find Sin(t) & Cos (t), with the help of 

vectorization. 

>> x = Sin (t); 

>> y = Cos (t); 

 The MATLAB function Sin calculates Sin (t) for each element of 

vector t to create the vector x of 201 elements.  Similarly, the vector y 

will have 201 Cosine values of the elements of t.  Now, we have to plot 



 
 
 

the two vectors x & y with respect to t, which can be easily done by using 

the plot command. 

>> plot (t, x, t, y); 

 A new figure window, named 'figure 1' by default, will be opened, 

consisting of one cycle of Sine & Cosine waves. 

 MATLAB automatically selects appropriate colors, axis ranges, 

tick mark locations etc.  If the figure is not displayed or printed in color, 

both the curves will be in black.  Hence, it is better to change the line 

style by changing the plot command parameters to distinguish them. 

>> plot (t, x, '-', t, y, '-'); 

 The Cosine curve is plotted using the dashed line to know about 

the available options for line types, plot symbols and colors seek help on 

the plot command. 

 We can also add an appropriate legend to each curve, by using the 

legend command. 

>> lengend ('Sin', 'Cos'); 

 We can see the changes happening, in the figure window, with 

each of these commands.  Let us now add a label to x & y axes, adjust the 

scale of x-axis from 0 to 2 , & that of y-axis from -1 to 1, add grid lines 

and also a title to the graph, using the following commands. 

>> x label (4) 

>> y label ('Sin (t), Cos (t)'); 

>> axis ([0 2 * pi – 11]); 

>> grid 



 
 
 

>> title ('Sine and Cosine plot from 0 to 2/pi'); 

 The back slash (1) in front of pi, in the title command allows the 

Greek Symbol  to be inserted in the title for more information on the 

above topic under 'annotating graphs' within the 'graphics' option. 

 

 

2.4.2 CREATING A SUB PLOT 

 Plot x & y on two separate plots, by dividing the graphic space into 

two portions, which can be done by the sub plot command, it is assumed 

that the vectors t, x, y are already generated earlier. 

>> sub plot (2, 1, 1); 

 This command divides the graphic space into 2 parts & select the 

first portion for the current plot. 

>> plot (t, x, ' : '); 

 

 This plots the Sine Curve as a dotted line in the reserved space.  

The commands given below will give the graph appropriately. 

>> x label (4’); 

>> y label (‘Sin (t)’); 

>> title (‘Cosine plot from 0 to 2/Pi’); 

>> axis ([0 2 * Pi -1 1]); 



 
 
 

 The below figure shows the final appearance of the Sine & Cosine 

curves plotted separately. 

2.4.3 CREATING A STEM PLOT 

 The MATLAB command stem displays the discrete sequence or 

stem plot.  Replace the command plot by stem in any of the previously 

discussed Sine & Cosine MATLAB codes & observe the changes that 

occur for example, run the following to obtain stem plot of Sine wave.  

The increment is now Pi/10, instead of Pi/100. 

>> t = 0 : Pi / 10 : 2 * Pi; 

>> x = Sin (t); 

>> Stem (t, x); 

>> axis ([0 2 * Pi -1 1]); 

 

2.4.4 CREATING A BAR GRAPH 

 Bar graphs are suitable for displaying discrete data.  By default, a 

bar graph represents each element in a matrix as one bar.  Each bar is 

distributed along the x-axis, with each element in a column drawn at a 

different location.  All elements in a row are clustered around the same 

location on the x-axis.  Let us illustrate this with a simple example.  Let 

us plot a bar graph of the elements of a magic square matrix of 3x3 

dimensions. 

>> z = magic (3) 

Z = 

8 1 6 



 
 
 

3 5 7 

4 9 2 

>> bar (2) 

>> grid 

 Observe from figure that the bars in group 1 on  the x-axis 

correspond to the elements           [8 1 6] of the 1
st
 row of the matrix z.  

The bars in groups 2 and 3 similarly correspond to the 2
nd

 and 3
rd

 row 

elements of z. 

 

2.4.5 CREATING A HISTOGRAM 

 A histogram shows the distribution of data values.  It counts the 

number of elements within a range are displays each range as a 

rectangular bin.  The height of the bins represents the number of values 

that fall within each range.  Let us understand this concept with a simple 

example.  Let us create a 5000 elements vector x of randn numbers with 

normal distribution by calling the random function of MATLAB and see 

how all these elements are distributed using the histogram graph. 

>> x = rand n 

>> hist (x) 

 Observe from figure that all the 5000 elements of vector x are 

grouped into 10 bins, between -4 and +4 on the x-axis.   Each vertical 

rectangular bar is called a bin. 

 



 
 
 

        This distribution of data resembles that a bell shaped curve, which 

is expected of a normally distributed data.  Note that the data range is 

between -4 and +4.  The height of the bins can be found as a row vector 

using the following command. 

>> N = hist (x) 

N = 

Columns 1 through 9 

4 65 325 913 1474 1313 650 215 35 

Column 10 

6 

 Hence we can conclude that there are just 4numbers in vector x, 

whose value is close to -4, only 6 numbers which are close to +4 and the 

largest group of 1474 numbers whose value is close to zero, etc 

 

 

 

 

 

 

 

 

 



 
 
 

2.1. GENERATION OF UNIT IMPULSE 

%Aim: Write a Program to generate UNIT IMPULSE  

t=-5:0.01:5 ; 

x1= 1.*(t==0); 

x2= 0.*(t~=0); 

x= x1+x2; 

figure(1) 

plot(t,x);  

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('UNIT IMPULSE signal'); 

 

OUTPUT 

 

 

 



 
 
 

2.2. GENERATION OF UNIT STEP 

%Aim: Write a Program to generate UNIT STEP  

t=-5:0.01:5 ; 

x1= 1.*(t>=0); 

x2= 0.*(t<0); 

x= x1+x2; 

figure(1) 

plot(t,x); 

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('UNITSTEP  signal'); 

OUTPUT 

 

 

 



 
 
 

2.3. GENERATION OF SQUARE WAVE 

%Aim: Write a Program to generate square wave with frequency 

"F=10Hz" 

F = input('enter the frequency of square wave :'); 

T= 1/F ; 

t=0:3*T/100:3*T ; 

y= square(2*pi*F*t); 

figure(1) 

subplot(2,1,1) 

plot(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('square wave  signal'); 

subplot(2,1,2) 

stem(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index n(sec.)'); 

ylabel('amplitude x(n)'); 

title('square wave  sequence'); 

 



 
 
 

 

INPUT 

enter the frequency of square wave :  10 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

2.4.. GENERATION OF SAWTOOTH WAVE 

%Aim: Write a Program to generate sawtooth wave with frequency 

"F=2k Hz" 

F = input('enter the frequency of sawtooth wave :'); 

T= 1/F ; 

t=0:3*T/100:3*T ; 

y= sawtooth(2*pi*F*t); 

figure(1) 

subplot(2,1,1) 

plot(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('sawtooth wave  signal'); 

subplot(2,1,2) 

stem(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index n(sec.)'); 

ylabel('amplitude x(n)'); 

title('sawtooth wave  sequence'); 

 



 
 
 

INPUT  

enter the frequency of sawtooth wave : 2000 

OUTPUT 



 
 
 

2.5. GENERATION OF TRIANGULAR WAVE 

%Aim: Write a Program to generate triangular wave with frequency "F= 

1 MHz" 

F = input('enter the frequency of  triangular wave :'); 

T= 1/F ; 

t=0:3*T/100:3*T ; 

y= sawtooth(2*pi*F*t, 0.5); 

figure(1) 

subplot(2,1,1) 

plot(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('Triangular wave  signal'); 

subplot(2,1,2) 

stem(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index n(sec.)'); 

ylabel('amplitude x(n)'); 

title('Triangular wave  sequence'); 

 



 
 
 

INPUT 

 

enter the frequency of  triangular wave : 10000 

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 



 
 
 

2.6. GENERATION OF SIN WAVE 

%Aim: Write a Program to Generate sin wave with frequency "F=300 

Hz" 

F = input('enter the frequency of sin wave :'); 

T= 1/F ; 

t=0:3*T/100:3*T ; 

y= sin(2*pi*F*t); 

figure(1) 

subplot(2,1,1) 

plot(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('sin wave  signal'); 

subplot(2,1,2) 

stem(t,y); 

axis([min(t) max(t) min(y)-1 max(y)+1]); 

xlabel('Time Index n(sec.)'); 

ylabel('amplitude x(n)'); 

title('sin wave  sequence'); 

 



 
 
 

INPUT  

enter the frequency of sin wave :  300 

OUTPUT 

 

 

 



 
 
 

2.7. GENERATION OF UNIT RAMP 

%Aim: Write a Program to generate UNIT RAMP  

t=-5:0.01:5 ; 

x1= t.*(t>=0); 

x2= 0.*(t<0); 

x= x1+x2; 

figure(1) 

plot(t,x); 

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('UNITRAMP  signal'); 

OUTPUT 

 

 

 



 
 
 

2.8. GENERATION OF SINC WAVE 

%Aim: Write a Program to generate SINC wave  

t=-5:0.1:5 ; 

y= sinc(t) 

figure(1) 

subplot(2,1,1) 

plot(t,y) 

axis([min(t) max(t) min(y)-0.5 max(y)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('SINC  signal'); 

subplot(2,1,2) 

stem(t,y); 

axis([min(t) max(t) min(y)-0.5 max(y)+0.5]); 

xlabel('Time Index n(sec.)'); 

ylabel('amplitude x(n)'); 

title('SINC sequence'); 

 

 

 



 
 
 

OUTPUT 



 
 
 

2.9. GENERATION OF SIGNAL 

%Aim: Write a Program to generate fallowing signal 

%    x(t)   =   t+1 ( -1<=t<0 ) 

%           =   1   (  0<=t<1 ) 

%           =   t   (  1<=t<2 ) 

%           =   2   (  2<=t<3 ) 

%           =  -t+5 (  3<=t<5 ) 

t=-2:0.01:6 ; 

x1= (t+1).*(t>=-1 & t<0); 

x2=     1.*(t>=0  & t<1); 

x3=     t.*(t>=1  & t<2); 

x4=     2.*(t>=2  & t<3); 

x5= (-t+5).*(t>=3 & t<=5); 

x= x1+x2+x3+x4+x5; 

figure(1) 

plot(t,x); 

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('  signal x(t)'); 



 
 
 

 

OUTPUT 

 

 



 
 
 

3.1 SIGNAL ADDITION 

%Aim: Write a Program to perform addition i.e., x(t)=x1(t)+x2(t) 

%x1(t)= cos(6t) 

%x2(t)= cos(8t) 

t= 0:pi/400:pi; 

x1=cos(6*t); 

x2=cos(8*t); 

x= x1+x2; 

figure(1) 

subplot(3,1,1); 

plot(t,x1); 

axis([min(t) max(t) min(x1)-0.5 max(x1)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x1(t)'); 

title('signal 1:cosine wave of frequency 3/pi Hz'); 

subplot(3,1,2); 

plot(t,x2); 

axis([min(t) max(t) min(x2)-0.5 max(x2)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x2(t)'); 



 
 
 

title('signal 2:cosine wave of frequency 4/pi Hz'); 

subplot(3,1,3); 

plot(t,x); 

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x(t)=x1(t)+x2(t)'); 

title('RESULTANT SIGNAL :signal1+signal 2'); 

OUTPUT 

 

 

 

 

 



 
 
 

3.2 SIGNAL MULTIPLICATION 

%Aim: Write a Program to perform x(t)=x1(t).x2(t) 

%x1(t)= cos(2t) 

%x2(t)= cos(8t) 

t= 0:pi/400:pi; 

x1=cos(4*t); 

x2=cos(8*t); 

x= x1.*x2; 

figure(1) 

subplot(3,1,1); 

plot(t,x1); 

axis([min(t) max(t) min(x1)-0.5 max(x1)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x1(t)'); 

title('signal 1:cosine wave of frequency 2/pi Hz'); 

subplot(3,1,2); 

plot(t,x2); 

axis([min(t) max(t) min(x2)-0.5 max(x2)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x2(t)'); 



 
 
 

title('signal 2:cosine wave of frequency 4/pi Hz'); 

subplot(3,1,3); 

plot(t,x); 

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]); 

xlabel('TIME INDEX t(sec)'); 

ylabel('x(t)=x1(t).x2(t)'); 

title('RESULTANT SIGNAL :produst of signal1 & signal 2'); 

 

OUTPUT 

 

 

 

 

 



 
 
 

2.3 SIGNAL SHIFTING 

%Aim: Write a Program to generate x(t-t0) signal 

%    x(t)   =   t+1 ( -1<=t<0 ) 

%           =   1   (  0<=t<1 ) 

%           =   t   (  1<=t<2 ) 

%           =   2   (  2<=t<3 ) 

%           =  -t+5 (  3<=t<5 ) 

t=-2:0.01:6 ; 

x1= (t+1).*(t>=-1 & t<0); 

x2=     1.*(t>=0  & t<1); 

x3=     t.*(t>=1  & t<2); 

x4=     2.*(t>=2  & t<3); 

x5= (-t+5).*(t>=3 & t<=5); 

 x= x1+x2+x3+x4+x5; 

 disp('the program will now ask for the amount of shift'); 

disp('enter a +ve number for delay & -ve number for advancement '); 

t0= input('enter the desired amount of shift of the signal'); 

t_shift = t+t0; 

x_shift = x; 

a= min(min(t),min(t_shift)); 



 
 
 

b= max(max(t),max(t_shift)); 

subplot(2,1,1); 

plot(t,x); 

grid; 

axis([a b min(x) max(x)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('x(t)'); 

title('original signal'); 

subplot(2,1,2); 

plot(t_shift,x_shift); 

grid; 

axis([a b min(x) max(x)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('x(t-t0)'); 

title('Time shifted signal'); 

 

 

 

 

 



 
 
 

INPUT  

the program will now ask for the amount of shift 

enter a +ve number for delay & -ve number for advancement  

enter the desired amount of shift of the signal 5 

 

OUTPUT 

 



 
 
 

2.4 SIGNAL FOLDING 

%Aim: Write a Program to generate x(-t) signal 

%    x(t)   =   t+1 ( -1<=t<0 ) 

%           =   1   (  0<=t<1 ) 

%           =   t   (  1<=t<2 ) 

%           =   2   (  2<=t<3 ) 

%           =  -t+5 (  3<=t<5 ) 

t=-2:0.01:6 ; 

x1= (t+1).*(t>=-1 & t<0); 

x2=     1.*(t>=0  & t<1); 

x3=     t.*(t>=1  & t<2); 

x4=     2.*(t>=2  & t<3); 

x5= (-t+5).*(t>=3 & t<=5); 

x= x1+x2+x3+x4+x5; 

t_reverse = -fliplr(t); 

x_reverse = fliplr(x); 

a= min(min(t),min(t_reverse)); 

b= max(max(t),max(t_reverse)); 

subplot(2,1,1); 

plot(t,x); 



 
 
 

grid; 

axis([a b min(x) max(x)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('x(t)'); 

title('original signal'); 

subplot(2,1,2); 

plot(t_reverse,x_reverse); 

grid; 

axis([a b min(x) max(x)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('x(-t)'); 

title('Time Reversal signal'); 

 

 

 

 

 

 

 

 



 
 
 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

2.5 MATLAB CODE FOR FINDING ENERGY OF A SIGNAL 

n=0:1:50; 

x=(1/2).^n; 

stem(n,x); 

xlabel('n'); 

ylabel('x(n)'); 

title(' signal x(n)'); 

axis([0 25 0 1]); 

disp('the calculated energy E of signal is'); 

E=sum(abs(x).^2) 

disp('the theoretical energy of the signal is'); 

E_Theory=4/3 

INPUT & OUTPUT 

the calculated energy E of signal is  

E =1.3333 

the theoretical energy of the signal is 

E_Theory =1.3333 

 

 

 



 
 
 

 

 

 

  

 



 
 
 

               2.6 MATLAB CODE FOR FINDING POWER OF SIGNAL 

N=input('type a value for N'); 

t=-N:0.001:N; 

x=cos(2*pi*50*t).^2; 

disp('the calculated power P of signal is'); 

P=sum(abs(x).^2)/length(x) 

plot(t,x); 

xlabel('time axis--->> n'); 

ylabel('x(n)'); 

title(' signal x(n)'); 

axis([0 0.1 0 1]); 

disp('the theoretical power of signal is'); 

P_Theory=3/8 

INPUT & OUTPUT 

type a value for N 10 

the calculated power P of signal is  

P = 0.3750 

the theoretical power of signal is 

P_Theory = 0.3750 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

4.1 REAL SIGNAL DECOMPOSITION 

%Aim: Write a Program to even component and odd component of signal 

x(t) 

%    x(t)   =   2   ( 0<t<=2 ) 

%           =   0   (elsewhere) 

  

t=-4:0.01:4 ; 

x1=     2.*(t>0  & t<=2); 

x2=     0.*(t>2  & t<0); 

x= x1+x2; 

t_reverse = -fliplr(t); 

x_reverse = fliplr(x); 

x_even = (0.5)*(x + x_reverse); 

x_odd = (0.5)*(x - x_reverse); 

a= min(min(t),min(t_reverse)); 

b= max(max(t),max(t_reverse)); 

 subplot(3,1,1); 

plot(t,x); 

grid; 

axis([a b min(x) max(x)+0.5]); 

xlabel('time index t(sec)'); 



 
 
 

ylabel('x(t)'); 

title('original signal'); 

 subplot(3,1,2); 

plot(t,x_even); 

grid; 

axis([a b min(x_even)-0.5 max(x_even)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('xe(t)'); 

title(' Even component of signal x(t)'); 

 subplot(3,1,3); 

plot(t,x_odd); 

grid; 

axis([a b min(x_odd)-0.5 max(x_odd)+0.5]); 

xlabel('time index t(sec)'); 

ylabel('xo(t)'); 

title(' Odd component of signal x(t)'); 

 

 

 

 



 
 
 

OUTPUT 

 

 



 
 
 

4.2 COMPLEX  SIGNAL DECOMPOSITION 

%Aim: Write a Program to conjugate even component and conjugate odd 

component of signal x(t) 

%    x(t)   =  exp((-1+j2pi)t) 

clc; 

close all; 

clear all; 

t=-2:0.05:2 ; 

x=exp((-0.8+j*2*pi).*t); 

 x_conj_rev = fliplr(conj(x)); 

x_conj_even = (0.5)*(x + x_conj_rev); 

x_conj_odd = (0.5)*(x - x_conj_rev); 

 figure(1) 

subplot(4,1,1); 

stem(t,real(x)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('Real(x(t))'); 

title('real values of original signal'); 

subplot(4,1,2); 

stem(t,imag(x)); 



 
 
 

grid; 

xlabel('time index t(sec)'); 

ylabel('Imag(x(t))'); 

title('imaginary  values of original signal'); 

 subplot(4,1,3); 

stem(t,abs(x)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('Mag(x(t))'); 

title('magnitude values of original signal'); 

 subplot(4,1,4); 

stem(t,angle(x)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('phase(x(t))'); 

title('phase values of original signal'); 

  

figure(2) 

subplot(4,1,1); 

stem(t,real(x_conj_even)); 



 
 
 

grid; 

xlabel('time index t(sec)'); 

ylabel('Real(conj.even x(t))'); 

title('real values of conjugate even signal'); 

 subplot(4,1,2); 

stem(t,imag(x_conj_even)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('imag(conj.even x(t))'); 

title('imaginary values of conjugate even signal'); 

 subplot(4,1,3); 

stem(t,abs(x_conj_even)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('Mag(conj.even x(t))'); 

title('magnitude values of conjugate evensignal'); 

 subplot(4,1,4); 

stem(t,angle(x_conj_even)); 

grid; 

xlabel('time index t(sec)'); 



 
 
 

ylabel('Phase(conj.even x(t))'); 

title('phase values of conjugate even signal'); 

 figure(3) 

subplot(4,1,1); 

stem(t,real(x_conj_odd)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('Real(conj.odd x(t))'); 

title('real values of conjugate odd signal'); 

 subplot(4,1,2); 

stem(t,imag(x_conj_odd)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('imag(conj.odd x(t))'); 

title('imaginary  values of conjugate odd signal'); 

 subplot(4,1,3); 

stem(t,abs(x_conj_odd)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('Mag(conj.odd x(t))'); 



 
 
 

title('magnitude values of conjugate odd signal'); 

 subplot(4,1,4); 

stem(t,angle(x_conj_odd)); 

grid; 

xlabel('time index t(sec)'); 

ylabel('phase(conj.odd x(t))'); 

title('phase values of conjugate odd signal'); 

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

5.  CONVOLUTION 

%Aim: Write a Program to perform convolution of two signals x(t) and 

h(t) 

% x(t)  = 1     ,0<=t<=1 

%       = 0     ,elsewhere 

% h(t)  = 1     ,1<=t<=2 

%       = 0     ,elsewhere 

clc; 

close all; 

clear all; 

t1=-1:0.01:2 ; 

x1= 1.*(t1>=0 & t1<=1 ); 

x2= 0.*(t1<0 & t1>1 ); 

x= x1+x2; 

figure(1) 

plot(t1,x); 

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('signal x(t)'); 

 t2=-1:0.01:3 ; 



 
 
 

h1= 1.*(t2>=1 & t2<=2 ); 

h2= 0.*(t2<1 & t2>2 ); 

h= h1+h2; 

figure(2) 

plot(t2,h); 

axis([min(t2) max(t2) min(h)-0.5 max(h)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude h(t)'); 

title('signal h(t)'); 

 a=min(t1)+min(t2); 

b=max(t1)+max(t2); 

t3=a:0.01:b; 

y=conv(x,h); 

figure(3) 

plot(t3,y); 

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude y(t)'); 

title('convolution of x(t) and h(t)'); 

 



 
 
 

OUTPUT 

 

 

 

 

 

 



 
 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 
 
 

6.1. AUTO CORRELATION 

%Aim: Write a Program to perform auto correlation x(t)  

% x(t)  = 1     ,0<=t<=1 

%       = 0     ,elsewhere 

clc; 

close all; 

clear all; 

t1=-1:0.01:2 ; 

x1= 1.*(t1>=0 & t1<=1 ); 

x2= 0.*(t1<0 & t1>1 ); 

x= x1+x2; 

figure(1) 

plot(t1,x); 

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('signal x(t)'); 

 t2=-fliplr(t1); 

 a=min(t1)+min(t2); 

b=max(t1)+max(t2); 



 
 
 

 t3=a:0.01:b; 

y=xcorr(x,x); 

figure(2) 

plot(t3,y); 

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude y(t)'); 

title('Autocorrelation of x(t)'); 

OUTPUT 

 

 

 



 
 
 

 

 

 

 

 

 

  



 
 
 

6.2. CROSS CORRELATION 

%Aim: Write a Program to perform cross correlation of two signals x(t) 

nad h(t) 

% x(t)  = 1     ,0<=t<=1 

%       = 0     ,elsewhere 

% h(t)  = 1     ,1<=t<=2 

%       = 0     ,elsewhere 

clc; 

close all; 

clear all; 

t1=-1:0.01:2 ; 

x1= 1.*(t1>=0 & t1<=1 ); 

x2= 0.*(t1<0 & t1>1 ); 

x= x1+x2; 

figure(1) 

plot(t1,x); 

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude x(t)'); 

title('signal x(t)'); 

t2=-1:0.01:3 ; 



 
 
 

h1= 1.*(t2>=1 & t2<=2 ); 

h2= 0.*(t2<1 & t2>2 ); 

h= h1+h2; 

figure(2) 

plot(t2,h); 

axis([min(t2) max(t2) min(h)-0.5 max(h)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude h(t)'); 

title('signal h(t)'); 

 t2_rev=-fliplr(t2); 

a=min(t1)+min(t2_rev); 

b=max(t1)+max(t2_rev); 

t3=a:0.01:b; 

y=xcorr(x,h); 

figure(3) 

plot(t3,y(:,1:701)); 

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]); 

xlabel('Time Index t(sec.)'); 

ylabel('amplitude y(t)'); 

title('crosscorrelation of x(t) and h(t)'); 



 
 
 

  

OUTPUT 

 

 

 

 

 



 
 
 

 

 

 

 

 



 
 
 

7.1. LINEARITY PROPERTY OF SYTEM 

Aim: Write a Program to verifiy the linearity property of a system  

clc; 

close all; 

clear all; 

N=input('enter the number of samples which are assigned for x1 & x2  '); 

x1=input('TYPE "N" number of SAMPLES For x1'); 

x2=input('TYPE "N" number of SAMPLES For x2'); 

a1=input(' The Scale factor a1 is'); 

a2=input(' The Scale factor a2 is'); 

x=a1*x1+a2*x2; 

n=0:N-1; 

y01=n.*(x.^2); 

 y1=n.*(x1.^2); 

y1s=a1*y1; 

y2=n.*(x2.^2); 

y2s=a2*y2; 

y02=y1s+y2s; 

disp('output sequence yo1 is ');disp(y01); 

disp('output sequence yo2 is ');disp(y02); 



 
 
 

if (y01 == y02) 

disp('y01=y02. Hence The LTI system is LINEAR'); 

else 

  disp('y01~=y02. Hence The LTI system is Non-LINEAR');   

end; 

INPUT  

 enter the number of samples which are assigned for x1 & x2  6 

TYPE "N" number of SAMPLES For x1   [2 1 3 -1 4 -2] 

TYPE "N" number of SAMPLES For x2    [3 -2 0 1 -1 1] 

The Scale factor a1 is  2 

 The Scale factor a2 is  3 

OUTPUT 

output sequence yo1 is  

    0    16    72     3   100     5 

 output sequence yo2 is  

    0    14    36    15   140    55 

 y01~=y02. Hence The LTI system is Non-LINEAR 

 

 

 



 
 
 

7.2. TIME INVARIANCE PROPERTY OF SYTEM 

%Aim: Write a Program to verifiy the time invariant property of a system  

clc; 

close all; 

clear all; 

 x=input('TYPE THE SAMPLES OF x(n)'); 

n=0:length(x)-1; 

y=n.*(x.^2); 

disp('ENTER a positive number for delay'); 

d=input('Desired Delay of the signal is '); 

 xd=[zeros(1,d),x]; 

nxd=0:length(xd)-1; 

yd=nxd.*(xd.^2); 

nyd=0:length(yd)-1; 

xp=[x,zeros(1,d)]; 

yp=[zeros(1,d),y]; 

 figure(1) 

subplot(2,1,1); 

stem(nxd,xp); 

grid; 



 
 
 

xlabel('time index n'); 

ylabel('xp(n)'); 

title ('Original input signal xp(n)'); 

 subplot(2,1,2); 

stem(nxd,xd); 

grid; 

xlabel('time index n'); 

ylabel('xd(n)'); 

title ('Delayed input signal xd(n)'); 

figure(2) 

 subplot(2,1,1); 

stem(nyd,yp); 

grid; 

xlabel('time index n'); 

ylabel('yp(n)'); 

title ('Delayed Output signal yp(n) is'); 

 subplot(2,1,2); 

stem(nyd,yd); 

grid; 

xlabel('time index n'); 



 
 
 

ylabel('yd(n)'); 

title ('Output signal for delayed input is yd(n)'); 

 disp('Original input signal x(n) is ');disp(x); 

disp('Delayed input signal xd(n) is ');disp(xd); 

disp(' Delayed Output signal yp(n) is ');disp(yp); 

disp(' Output signal for delayed input is yd(n)  ');disp(yd); 

 if (yp == yd) 

disp('yp = yd. Hence The system is TIME INVARIANT'); 

else 

  disp('yp ~= yd. Hence The system is TIME VARIANT');   

end; 

 

INPUT  

 

TYPE THE SAMPLES OF x(n) [2 1 3 -1 4 -2] 

ENTER a positive number for delay 

Desired Delay of the signal is 3 

 

OUTPUT 

Original input signal x(n) is  



 
 
 

     2     1     3    -1     4    -2 

 

Delayed input signal xd(n) is  

     0     0     0     2     1     3    -1     4    -2 

 

 Delayed Output signal yp(n) is  

     0     0     0     0     1    18     3    64    20 

 

 Output signal for delayed input is yd(n)   

     0     0     0    12     4    45     6   112    32 

 

yp ~= yd. Hence The system is TIME VARIANT 



 
 
 

 

 

 



 
 
 

8.1 MATLAB CODE FOR UNIT IMPULSE RESPONSE OF LTI 

SYSTEM 

num=input('type the numerator vector'); 

den=input('type the denominator vector'); 

N=input('type the desired length of the output sequence N'); 

n=0:N-1; 

imp=[1 zeros(1,N-1)]; 

h=filter(num,den,imp); 

disp(' The impulse response of LTI system is');disp(h); 

stem(n,h) 

xlabel('time index n');ylabel('h(n)'); 

title('Impulse response of LTI system'); 

 

INPUT & OUTPUT 

ALL ZERO SYSTEM 

type the numerator vector  [1 0.75 0.5 -0.25] 

type the denominator vector  1 

type the desired length of the output sequence N  10 

 The impulse response of LTI system is 

  Columns 1 through 10 

 



 
 
 

    1.0000    0.7500    0.5000   -0.2500         0         0         0         0         0         

0 

 

 

 

  



 
 
 

ALL POLE SYSTEM 

 

type the numerator vector  1 

type the denominator vector  [1 -0.9 0.81] 

type the desired length of the output sequence N  50 

The impulse response of LTI system is 

Columns 1 through 10 

1.0000    0.9000     0    -0.7290   -0.6561   -0.0000    0.5314   0.4783    

0.0000   -0.3874    

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

POLE-ZERO SYSTEM 

 

Columns 1 through 10 

1.0000   -1.6000   0.9600   1.7920   0.8192   -0.4915   -0.9175  -0.4194    

0.2517    0.4698     

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

8.2. MATLAB CODE FOR UNIT STEP RESPONSE OF LTI 

SYSTEM 

num=input('type the numerator vector'); 

den=input('type the denominator vector'); 

N=input('type the desired length of the output sequence N'); 

n=0:1:N-1; 

u=ones(1,N); 

s=filter(num,den,u); 

disp(' The step response of LTI system is');disp(s); 

stem(n,s) 

xlabel('time index n');ylabel('s(n)'); 

title('Step response of LTI system'); 

INPUT & OUTPUT 

ALL ZERO SYSTEM 

type the numerator vector [1 0.75 0.5 -0.25] 

type the denominator vector 1 

type the desired length of the output sequence N 10 

 The step response of LTI system is 

Columns 1 through 10 

1.0000    1.7500    2.2500    2.0000    2.0000    2.0000     2.0000    2.0000    

2.0000    2.0000 

 



 
 
 

 

 

 

 

 

 

 

ALL POLE SYSTEM 

type the numerator vector 1 

type the denominator vector [1 -0.9 0.81] 

type the desired length of the output sequence N 10 

 The step response of LTI system is 

Columns 1 through 10 

1.0000    1.9000    1.9000    1.1710    0.5149    0.5149    1.0463     1.5246    

1.5246    1.1372   

 

 



 
 
 

 

POLE ZERO SYSTEM 

type the numerator vector [1 -2.4 2.88] 

type the denominator vector [1 -0.8 0.64] 

type the desired length of the output sequence N 10 

 The step response of LTI system is 

Columns 1 through 7 

1.0000   -0.6000    0.3600    2.1520    2.9712    2.4797    1.5622     1.1427    

1.3944    1.8642 

 

 

 

 

 



 
 
 

8.3. MATLAB CODE FOR FREQUENCY OF RESPONSE OF LTI 

SYSTEM 

 

num=input('type the numerator vector'); 

den=input('type the denominator vector'); 

N=input('number of frequency points'); 

w=0:pi/N:pi; 

H=freqz(num,den,w); 

figure; 

subplot(2,1,1);plot(w/pi,real(H)); 

xlabel('\omega /pi');ylabel('Amplitude') 

title('Real part'); 

subplot(2,1,2); 

plot(w/pi,imag(H)); 

xlabel('\omega /pi');ylabel('Amplitude') 

title('Imaginary part'); 

figure; 

subplot(2,1,1); 

plot(w/pi,abs(H)); 

xlabel('\omega /pi');ylabel('Magnitude'); 

title('Magnitude spectrum'); 



 
 
 

subplot(2,1,2); 

plot(w/pi,angle(H)); 

xlabel('\omega /pi');ylabel('Phase(radians)'); 

title('Phase Spectrum'); 

 

INPUT & OUTPUT 

type the numerator vector  [0.5 0 0.5] 

type the denominator vector 1 

number of frequency points 512 

 

 

 

 



 
 
 

8.4. MATLAB CODE FOR FINDING THE STABILITY OF LTI 

SYSTEM 

num=input('type the numerator vector'); 

den=input('type the denominator vector'); 

[z,p,k]=tf2zp(num,den); 

disp('Grain constant is');disp(k); 

disp('zeros are at');disp(z); 

disp('radius of zeros');radzero=abs(z) 

disp('poles are at ');disp(p) 

disp('radius of poles '); 

radpole=abs(p) 

if max(radpole)>=1 

disp('ALL the POLES do not lie within the unit circle'); 

disp('Oooops........ the given LTI system is not a stable 

sytem'); 

else 

disp('ALL the POLES lie WITHIN the Unit circle'); 

disp('The given LTI system is a RELIABLE and STABLE 

sytem'); 

end; 

zplane(num,den) 



 
 
 

title('pole-zero map of the LTI system'); 

INPUT & OUTPUT 

POLE - ZERO SYSTEM 

type the numerator vector[1 -2.4 2.88] 

type the denominator vector[1 -0.8 0.64] 

Grain constant is 

     1 

zeros are at 

   1.2000 + 1.2000i 

   1.2000 - 1.2000i 

radius of zeros 

radzero = 

    1.6971 

    1.6971 

poles are at  

   0.4000 + 0.6928i 

   0.4000 - 0.6928i 

radius of poles  

radpole = 

0.8000 

0.8000 

 

ALL the POLES lie WITHIN the Unit circle 

The given LTI system is a RELIABLE and STABLE sytem 



 
 
 

 

 

 

 

 

 

 

 

 

 

ALL POLE SYSTEM 

type the numerator vector  1 

type the denominator vector[1 0.9 -0.81] 

Grain constant is 

     1 

zeros are at 

radius of zeros 

radzero = 

Empty matrix: 0-by-1 

poles are at  

   -1.4562 

    0.5562 



 
 
 

radius of poles  

radpole = 

    1.4562 

    0.5562 

ALL the POLES do not lie within the unit circle 

Oooops........ the given LTI system is not a stable sytem 

 

 

 

 

 

 

 



 
 
 

9. MATLAB CODE FOR OBSERVING GIBBS PHENOMENON 

figure(1); 

t=-3:6/1000:3; 

N=input('type the number of orthogonal signals' ); 

c0=0;w0=pi; 

y=c0*ones(1,length(t)); 

for n=1:N 

    cn=(1/n*pi)*sin(n*pi/2); 

    c_n=cn; 

    y=y+cn*exp(j*n*w0*t)+c_n*exp(-j*n*w0*t); 

end; 

plot(t,y); 

xlabel('time index t'); 

ylabel('x(t)'); 

title('Approximating a square signal by using 05 orthogonal 

signals'); 

 

 

 

 

 



 
 
 

INPUT & OUTPUT 

type the number of orthogonal signals05 

 

 

  

 

 

 

 

type the number of orthogonal signals 10 

 

 

 

 

 

 

type the number of orthogonal signals 100 

 

 

 



 
 
 

 

 

type the number of orthogonal signals  1000 

 



 
 
 

10. MATLAB CODE FOR COMPUTING THE DFT 

clc;clear all; 

f=100; Fs=1000; 

Ts=1/Fs; N=1024; 

n=[0:N-1]*Ts; 

x=0.8*cos(2*pi*f*n); 

figure; 

plot(n,x);grid; 

axis([0 0.05 -1 1]); 

title('cosine signal of frequency f'); 

xlabel('time n (sec.)');ylabel('x(n)'); 

Xk=fft(x,N); 

k=0:N-1; 

figure; 

Xmag=abs(Xk); 

subplot(2,1,1);plot(k,Xmag); 

title('Magnitude of fourier transform'); 

xlabel('frequency index k');ylabel('Magnitude'); 

subplot(2,1,2);plot(k,angle(Xk));grid; 

title('Phase of fourier transform'); 

xlabel('frequency index k'); ylabel('phase'); 

 

 



 
 
 

OUTPUT 

 

 

 

 

 

 

 



 
 
 

11.1. MATLAB CODE FOR DRAWING THE POLE ZERO MAP 

IN S-DOMAIN 

clc;clear all; 

num = input ('type the numerator polynomial vector'); 

den = input(' type the denominator polynomial vector'); 

H=tf( num, den) 

[p,z]=pzmap(H); 

disp(' zeros are at');disp(z) 

disp(' poles are at');disp(p) 

figure; 

pzmap(H) 

[r,p,k]=residue(num,den); 

disp('PFE COEFFICIENTS ');disp(r); 

disp('GAIN CONSTANTS IS ');disp(k); 

if max(real(p))>=1 

disp('ALL poles DONOT LIE in the Left Half of S-plane'); 

disp(' Ooops.... The given LTI system is NOT a stable 

system'); 

Else 

disp('All the POLES lie in the Left half of S-plane'); 

disp('The given LTI system is a STABLE system'); 



 
 
 

end; 

figure; 

t=0:0.1:5; 

h=impulse(H,t); 

plot(t,h) 

xlabel('t');ylabel('h(t)'); 

title('Impulse Response of the LTI system'); 

 

INPUT & OUTPUT 

type the numerator polynomial vector[1 -2 1] 

 type the denominator polynomial vector[1 6 11 6] 

 Transfer function: 

    s^2 - 2 s + 1 

---------------------- 

s^3 + 6 s^2 + 11 s + 6 

  zeros are at 

     1 

     1 

 

 poles are at 

   -3.0000 

   -2.0000 



 
 
 

   -1.0000 

PFE COEFFICIENTS  

    8.0000 

   -9.0000 

    2.0000 

GAIN CONSTANTS IS  

 

 

 

 

 

 



 
 
 

11.2. MATLAB CODE FOR DRAWING THE POLE ZERO MAP 

IN Z-DOMAIN 

clc;clear all; 

num = input ('type the numerator vector'); 

den = input(' type the denominator vector'); 

H=filt( num, den) 

z=zero(H); 

disp(' zeros are at');disp(z) 

disp(' radius of zeros');radzero=abs(z) 

[r,p,k]=residuez(num,den); 

disp('poles are at ');disp(p) 

disp('radius of poles');radpole=abs(p) 

disp('PFE COEFFICIENTS ');disp(r); 

disp('GAIN CONSTANTS IS ');disp(k); 

figure; 

zplane(num,den); 

title('Pole-Zero Map of the LTI system in Z-plane'); 

if max(radpole)>=1 

disp('All the POLES dont lie within the Unit Circle'); 

disp(' Ooops.... The given LTI system is NOT a stable 

system'); 



 
 
 

else 

disp('All the POLES lie WITHIN the Circle'); 

disp('The given LTI system is a REALIZABLE and 

STABLE system'); 

end; 

figure; 

impz(num,den) 

 

INPUT & OUTPUT 

type the numerator vector [1 -1] 

 type the denominator vector [1 1 0.16] 

 Transfer function: 

      1 - z^-1 

-------------------- 

1 + z^-1 + 0.16 z^-2 

 Sampling time: unspecified 

 zeros are at 

     0 

     1 

 radius of zeros 

radzero = 

     0 



 
 
 

     1 

poles are at  

   -0.8000 

   -0.2000 

radius of poles 

radpole = 

    0.8000 

    0.2000 

PFE COEFFICIENTS  

     3 

    -2 

GAIN CONSTANTS IS  

All the POLES lie WITHIN the Circle 

The given LTI system is a REALIZABLE and STABLE system 

 

 

 

 

 

 

 

 



 
 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

13. GENERATION OF GAUSSIAN NOISE 

clc; 

clear all; 

x1=randn(1,5000); 

x2=randn(1,5000); 

figure; 

plot(x1,x2,'.') 

title('scattered plot of Gaussian Distribution Random numbers'); 

x1=rand(1,5000); 

x2=rand(1,5000); 

figure; 

plot(x1,x2,'.') 

title('scattered plot of uniform  Distribution Random numbers'); 

x3=rand(1,100000); 

figure; 

subplot(2,1,1); 

hist(x3) 

title('uniform  Distribution '); 

y=randn(1,100000); 

subplot(2,1,2); 

hist(y) 

title('Gaussian Distribution'); 

ymu=mean(y); 

ymsq=sum(y.^2)/length(y); 

ysigma=std(y); 

yvar=var(y); 

yskew=skewness(y); 

ykurt=kurtosis(y); 
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14. VERIFICATION OF SAMPLING THEOREM 

clc; clear all; 

t=-5:0.0001:5; 

F1=3;F2=23; 

x=cos(2*pi*F1*t)+cos(2*F2*t); 

figure(1) 

plot(t,x); 

axis ([-0.4 0.4 -2 2]) 

xlabel('Time t(sec)') 

ylabel('x(t)'); 

title('Continuous time signal : x(t)=cos(2\piF_1t)+cos(2\piF_2t)'); 

% CASE 1 

Fs1=1.4*F2; ts1=1/Fs1; 

n1=-0.4:ts1:0.4; 

xs1=cos(2*pi*F1*n1)+cos(2*pi*F2*n1); 

figure(2);stem(n1,xs1) 

hold on; plot(t,x,'r:'); 

axis ([-0.4 0.4 -2 2 ]);hold off 

xlabel('Time Sample (n)'),ylabel('Amplitude'); 

title('Discrete Time Signal '); 

legend('Fs <@Fmax'); 

 % Case 2 

Fs2=2*F2;ts2=1/Fs2; 

n2=-0.4:ts2:0.4; 

xs2=(cos(2*pi*F1*n2)+cos(2*pi*F1*n2)+cos(2*pi*F2*n2)); 

figure(3); 

stem(n2,xs2) 

hold; plot(t,x,'r:') 



 
 
 

axis([-0.4 0.4 -2 2 ]);hold off 

xlabel('Time Sample (n)') 

ylabel('Amplitude'); 

title('Discrete Time Signal '); 

legend('Fs=2Fmax'); 

  

% Case 3 

Fs3=7*F2; 

ts3=1/Fs3; 

n3=-0.4:ts3:0.4; 

xs3=(cos(2*pi*F1*n3)+cos(2*pi*F2*n3)); 

figure(4); 

stem(n3,xs3); 

 hold; plot(t,x,'r:') 

axis([-0.4 0.4 -2 2 ]);hold off 

xlabel('Time Sample (n)'),ylabel('Amplitude'); 

title('Discrete Time Signal '); 

legend('Fs>2Fmax'); 
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15. REMOVAL OF NOISE BY AUTOCORRELATION / CROSS 

CORRELATION 

%REMOVAL OF NOISE BY AUTOCORRELATION / CROSS 

CORRELATION 

 clc;  

N=100; 

n=0: N-1; 

dsnr=input('type desired SNR in dB'); 

x=sqrt(2)*sin((pi/5)*n); 

figure(1); 

stem(n,x); 

grid 

axis([ 0 50 -2 2 ]) 

xlabel('n'); ylabel('x(n)');title('Sinusoidal Signal x(n)' ) 

px=var(x); 

an=sqrt(px*(10^(-1)*dsnr/10)); 

w=sqrt(12)*(rand(1,N)-0.5); 

w=w*an; 

pn=var(w); 

disp('The calculated SNR'); 

SNRdb=10*log10(px/pn); 

figure(3); 

stem(n,w);grid 

axis([0 50 min(w) max(w)]) 

xlabel('n');ylabel('w(n)') 

title('Random Noise Signal w(n)'); 

y=x+w; 

figure(6); 



 
 
 

subplot(2,1,1); 

stem(n,y);grid 

axis([0 50 min(y) max(y)]) 

xlabel('n');ylabel('y(n)=x(n)+w(n)'); 

title('Sinusoidal Signal Corrupted with Random Noise') 

[ryy,lag] = xcorr(y,y,'unbiased'); 

subplot(2,1,2); 

stem(lag,ryy);grid 

axis ([0 50 -1.5 1.5]) 

xlabel('Lag Index 1’);ylabel(‘R_y_y(1)'); 

title('Autocorrelation Signal R_y_y(1)') 

[rxx,lag]=xcorr(x,x); 

figure(2);stem(lag,rxx);grid 

axis([-20 20 min(rxx) max(rxx)]) 

xlabel('Lag Index 1'); 

ylabel('R_x_x(1)'); 

title('Autocorrelation Signal R_x_x(1)') 

[rxw,lag]=xcorr(x,w); 

figure(5); 

stem(lag,rxw);grid 

axis([-20 20 min(rxw) max(rxw)]) 

xlabel('Lag Index 1'); 

ylabel('R_x_w(1)'); 

title('Cross Correlation Between x(n) and w(n)') 

[rww,lag]=xcorr(w,w); 

figure(4) 

stem(lag,rww); 

grid 

axis ([-20 20 min(rww) max(rww)]) 



 
 
 

xlabel('Lag Index '); 

ylabel('R_w_w(1)'); 

title('Autocorrelation Signal R_w_w(1)') 
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16.EXTRACTION OF PERIODIC SIGNAL MASKED BY NOISE 

USING CORRELATION 

M=256; 

n=0:M-1; 

x=cos(16*pi*n/M)+sin(32*pi*n/M); 

snr=input('Type the desired SNR'); 

px=var(x); 

w=sqrt(12)*(randn(1,M)-0.5); 

an=sqrt(px*(10^((-1*snr)/10))); 

w=w.*an; 

pn=var(w); 

SNRdb=10*log10(px/pn); 

y=x+w; 

N=M/8; 

L=floor(M/N); 

 d=zeros(1,M); 

for i=1:M 

if rem(i-1,N)==0 

d(i)=1; 

end; 

end; 

cyd=ifft(fft(y,M).*fft(d,M))/M; 

r=cyd*(M/L); 

figure(1) 

plot(n,x,'b'); 

axis([1 80 -3 3]) 

xlabel('‘n'); 

ylabel('x(n)'); 



 
 
 

title('periodic signal x(n)') 

figure(2); 

subplot(2,1,1); 

plot(n,y,'r'); 

grid; 

  

  

axis([1 96 -3 3]) 

xlabel('n'); 

ylabel('y(n)'); 

  

title('noisy signal y(n)') 

  

subplot(2,1,2); 

stem(n,d); 

grid; 

axis([1 96 -0.5  1.5]); 

xlabel('n'); 

ylabel('d(n)'); 

figure(3); 

plot(n,r,'k'); 

axis([1 80 -3 3]) 

xlabel('n'); 

ylabel('r(n)'); 

title(' extracted periodic signal r(n)') 

  

figure(4); 

plot(n,x,'b');hold on; 

axis([1 80 -3 3]) 



 
 
 

  

  

plot(n,r,'r:'); hold off; 

axis([1 80 -3 3]) 

legend('x(n)', 'r(n)') 
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17. verification of  Wiener khinchine relations 

clc; 

clear all; 

Fs=100; 

 t=0:1/Fs:10; 

x=sin (2*pi*15*t)+sin(2*pi*30*t); 

N=512; 

X=fft(x,N); 

 f=Fs*(0:N-1)/N; 

power=X.*conj(X)/N; 

figure(1) 

plot(f,power) 

title('power spectrum through fourier transform') 

xlabel('frequency f'); 

 ylabel('power'); 

figure(2) 

rxx=xcorr(x,x); 

sxx=fft(rxx,512); 

plot(f,abs(sxx)) 

title('fourier transform  of autocorrelation') 

xlabel('frequency f'); 

ylabel('abs(sxx)'); 
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