

DEPARTMENT OF

ELECTRONICS & COMMUNICATION

ENGINEERING

LABORATORY MANUAL

BASIC SIMULATION

(II B.Tech., - I – Sem.)

BALAJI INSTITUTE OF TECHNOLOGY &SCIENCE

Laknepally, Narsampet, Warangal

1. A MATLAB PRIMER

1.1 Introduction:

MATLAB is a mathematical software package, which is used

extensively in academia and industry and stands for MATrix

LABoratory. It has become the most fundamental and indispensable tool

for work at the world’s most innovative technology companies,

government research labs, financial situations and at more than 3,500

universities. It was developed by cleve moler, a professor of mathematics

and is available as a product, for purchase, from the mathworks Inc.,

USA. Cleve Moler and Jack little founded the Mathworks Inc in 1984.

Over last 20 years(2 decades), MATLAB has evolved into a much

powerful and versatile package, useful for a wide variety of academic,

research and industrial applications.

1.2 Why MATLAB?

i. As a matrix based system, it is a great tool for simulation and data

analysis.

ii. It is a simple, powerful and easy to learn programming language as

it provides extensive online help.

iii. Unlike other high level programming languages like FORTRAN, C

etc., it doesn’t require any variable declaration and dimension

statements at the beginning.

iv. It has thousands of built in functions for scientific and technical

computation, and hence the MATLAB programs, written for

solving complex problems, take a fraction of time and look very

small, in general, when compared to the codes written using other

high-level languages.

v. It provides the most optimized code, which is extremely quick,

especially for matrix based operations.

vi. It also enables the users to write their own functions for easy

customization.

vii. It is an interrupted language and hence we can execute the

commands by typing them at the command prompt one by one and

see the results immediately.

viii. Since MATLAB uses matrix notation, it replaces several ‘for’

loops, which are usually found in C type of codes.

ix. MATLAB is an indispensable Graphical User Interface(GUI) tool,

especially for ECE graduates, as they can use it for proper

understanding of concepts in several prescribed basic and advanced

subjects such as

 Mathematics

 Signals and systems

 Probability Theory and stochastic processes

 Control systems

 VLSI design

 Embedded systems

 Analog communications

 Wireless communications

 Artificial Neural Networks etc.

1.3 GETTING STARTED WITH MATLAB

1.3.1 LAUNCHING MATLAB

 If MATLAB is installed on your computer, you can possibly find a

MATLAB icon as a shortcut on your desktop of windows based system.

If not, click 'start' button, then go to programs and their you can find the

MATLAB application and MATLAB icon. Double click on the

MATLAB icon to launch the application.

 A new window, called MATLAB desktop, consisting of several

small windows, tool bars and other shortcut icons, opens up and you are

ready to begin MATLAB programming.

1.3.2 MATLAB DESKTOP LAYOUT

 When the MATLAB is launched for the first time, the MATLAB

desktop appears with the default layout, where you can change the

configuration to suit your needs, by deselecting the selected options and

selecting other tools, using the desktop pull down menu on toolbar. All

the selected items, under the desktop submenu appear in the MATLAB

desktop.

1.3.3 COMMAND WINDOW

 This is a place where you can enter all the MATLAB commands at

the "Command Prompt" (>>). When the command is typed at the

command prompt and 'Enter' key is pressed or clicked, MATLAB

executes those commands and displays the result of each operation

performed. Note that the command window is separated by using the

'undock' button.

1.3.4 THE COMMAND HISTORY WINDOW

 In this window, we can see all the commands that have been

entered earlier. Of course, the results of operations are not displayed

here. From here, you can select any command by just clicking once on

the command. Once selected, you can either delete it by using 'del' key or

copy it using 'Edit, Copy (Ctrl C)' and paste it either in command window

of MATLAB or in a separate document by using 'Edit, Paste (Ctrl V)'

commands as we do in any word processing documents. The other thing

is, when you double click on the command of command history, its gets

executed in the command window. This feature is extremely useful it

you wish to execute a command repeatedly, as you need not type it again

at the command prompt.

1.3.5 THE CURRENT DIRECTORY WINDOW

 This window displays the list of all the files and folders under the

current directory, which happens to be the 'work' (folders under the C)

sub-directory, by default, under the MATLAB root directory. Since the

'MATLAB' directory will be normally be in the hard disk C:\ in your

system, where all the application software packages are stored, you

should never use the default directory for saving your MATLAB files,

you will lose all your files when you format it. Assuming that hard disk

is partitioned into C:\, D:\, E:\, it is always safe to either use E:\ or D:\

drives for saving your new files in a new folder created specially for

MATLAB files.

1.3.6 CHANGING THE CURRENT DIRECTORY

 You can even create a new directory, to do so type the command

'path tool' at the command prompt. Then a new window called 'set path'

window opens as shown and that shows all the directories and sub-

directories which are visible to MATLAB to create a new folder and to

make it visible to MATLAB, follow the following steps / below steps.

 Click on ‘Add folder’. A new window called ‘Browse for folder

opens up.

 Click on up and down arrow buttons until the 'E' drive appears

select it by clicking once on it.

 Click on 'Make new folder' and type 'folder name' in the folder

window and say OK.

 The set path window now should look like the one observe that the

new directory is added to the MATLAB search path.

 Click on 'save' and then 'close' the set path window disappears and

the new path is saved permanently, until you delete it using the

'remove' button.

 Type cd E:\ slab at the command prompt and press 'Enter', observe

that the current directory has been changed to the new path. Now

you can start creating new files.

Each time you launch 'MATLAB', ensure first that the current

directory is the one that is your own, which can be done either by typing

the command at the command prompt.

1.4 MATLAB EDITOR AND DEBUGGER

 MATLAB provides powerful tools for creating, editing and

debugging files. Debugging is a process where the syntax errors in a

code are removed. The MATLAB Editor and Debugger allows users to

 Create a new MATLAB file, called a '.m' file, in to which the

MATLAB commands, comments and data are entered, using

different colours, for easy identification of strings and matching of

if-else statements, etc. for highlighting the syntax.

 Edit all that is written into the file using the usual commands such

as select, cut, copy, paste, find, replace etc.

 Import data, such as ASCII text or a huge matrix, from an external

environment into the file.

 Save the file in a chosen director.

 Debug the MATLAB commands by running the program either

line by line in a step mode or run a portion of the program by

setting break points.

 Open an existing .m file for a possible modification.

1.5 HOW TO CREATE A MATLAB FILE

We get couple of ways in which we can create a MATLAB .m file among

them, using MATLAB Editor and Debugger and using MATLAB

command window are 2 processes.

1.5.1 USING MATLAB EDITOR AND DEBUGGER

 After launching MATLAB and changing the current directory, now

use the toolbar and select file New M-file to open the MATLAB

editor and debugger. Enter the program that whatever you want to

execute, then save the file with file save commands by entering the

desired file name or what ever the file name you want to give. Ensure that

the file is saved in the directory created by you, then MATLAB editor

window appears.

 Now, type the file name at command prompt MATLAB runs the

file and displays the result. MATLAB in this case acts as a

"COMPILER" and the file name now becomes a function and now can be

called by another .m file by including this word as one of the commands

in a MATLAB program, with little modifications.

1.5.2 USING MATLAB COMMAND WINDOW

 Best way for a beginner is to use the command window to enter

each MATLAB command at the command prompt with a carriage return

at the end, observe carefully the difference that the result of each

statement is now displayed immediately on the screen, in this case,

MATLAB acts as a 'Interpreter'.

 Now type all the commands that you want to execute and now

select all the edited portion and then 'right click' on the selected portion

and choose 'create M-file', which will open the file in the MATLAB

editor window save the file with file save commands by entering the

filename that which you want to give.

 A few observations on the MATLAB code that you executed are

worth mentioning here. Blank spaces around operators such as -, :, and ()

are optional, but they improve readability with respect to case, MATLAB

is a case sensitive and, therefore requires an exact match for variable

names for example, if you have a variable 'a', you cannot refer to that

variable as 'A'. Any statement that starts with a % symbol is treated as a

comment and ignored during the execution. Comments are extremely

important not only for other readers to understand your program but also

for you to comprehend it at later stages output does not appear with

syntax highlighting, except for errors.

 Normally, every MATLAB statement ends with a semi-colon (;)

which serves two purpose. Your can enter any number of MATLAB

statements in the same line, if each statements ends with a semicolon, it

acts as an separator the semicolon is also used to suppress the immediate

display of output on screen, when a statement is executed, for example,

when MATLAB is used in interpreter mode, many a time, it will be

irritating to see a huge amount of data rolling out of screen.

1.6 HOW TO GET HELP

 There are several ways with which you can get help, in case you

are stuck with problem.

 Press F1 key on your keyboard or click on the ? symbol on the

toolbar to open a separate MATLAB comes with an extensive set

of documents, available under the category 'Documentation set' by

clicking on an appropriate link, such as 'getting started', 'user

guides', you can get all the information that is needed.

 Click on the 'search' button in the 'Help Navigator' window and

search for the desired information by typing or keyboard.

 Click on the ‘Index' button in the 'Help Navigator' and type a word

in the 'search index' for rectangular bar.

 Click on the demos button in the 'Help Navigator' window, where

there is an extensive set of demos on several topics, select a demo

and click on 'Run this demo'.

 Type 'Help' at the command prompt in the command window. A

listing of all the topics will be rolled out on the screen, click on any

one of those links.

 Since MATLAB is a very popular software used all over the globe.

Several users have established some 'user groups' for exchange of

idea between the users. The most prominent of them is the one

which is maintained by the math works. Inc. themselves at

http://www.mathworks.com/matlabcentral/. There are several

others that you can search on the internet.

2. INTRODUCTION TO VECTORS AND MATRICES

2.1 BASICS

 MATLAB is a matrix laboratory. It essentially works with only

one kind of object i.e., a matric.

 A scalar, which is a single number is a |x| matrix.

 MATLAB is extremely fast, especially for matrix operations.

2.1.1 VARIABLES

 A variable is a name that is assigned to a value stored in the

computer’s memory. Here the variable names must begin with a letter

and may be followed by any combination of letters, digits and

underscores. Predefined function names cannot be used as variable name

in our program. MATLAB stores variables in a part of memory called the

workspace. If a variable already exists, the previous value is overwritten

so as to store the recent value.

 Variables created at the MATLAB command prompt on in an M-

file exist until we clear them using clear command.

Example

>> x = 3 + 4

This creates a variable ‘x’ and assigns a value 7 to it. If we type x,

without a semicolon, the following displays

>>x

x = 7

The MATLAB statements are usually of the form.

Variable = expression

Variables are case-sensitive i.e. 'A' and 'a' are not same variables.

2.1.2 EXPRESSIONS AND STATEMENTS

 An expression may consist of numbers, variable names and some

pre-defined functions such as sin, cos, log etc. arithmetic operators such

as +, -, / etc. relational operators such as <, > etc. and some special

characters such as space, c, semicolon, [] etc.

 Evaluation of expression produces a matrix.

Example

>> 34/7

Ans =

4.8571

>>log (12)

Ans =

2.4849

If a variable is not assigned to an expression, MATLAB by default

creates a variable with the name 'ans' which stands answer and result of

expression is assigned to it.

THE ARITHMETIC AND RELATIONAL OPERATORS OF

MATLAB

ARITHMETIC

OPERATOR
OPERATION

RELATIONAL

OPERATOR
OPERATION

+ Addition = = Equal

- Subtraction ~ = Not Equal

*
Matrix

multiplication
 < Less than

.* Array multiplication < = Less than or equal to

/ Division > Greater than

^ Matrix power > =
Greater than or equal

to

.^ Array power

' Transpose

Examples

>> y = sqrt (17)

y=

4.1231

>>a = 3 + 4*j;

>>b = abs (a)

b =

5.

Here a is a complex variable indicated by special

Functions i and j. It can also be declared as

>>p = 2;

>>q = 7;

>>r = complex (p, q)

R =

2.0000 + 7.0000i

 The relational operators perform element by element comparison

between two variables. They return a logical value with the result set to

true ('1') where the relation is true and false ('0') where it is not.

 For example, the expression p > q will produce an output '0' since p

is less than q, while p < q will produce a '1' because the condition is

satisfied.

>> p > q

ans =

0

>> p < q

ans =

1

MATLAB doesn’t display the result, when the last character is a

semicolon (;), for example

>>y = sqrt (17);

This feature can be used to hide all the unwanted intermediate results.

SOME PREDIFINED FUNCTIONS OF MATLAB

ELEMENTARY FUNCTIONS
COMPLEX VARIABLE

FUNCTIONS

Exp Exponential Abs Absolute value

Log Natural Logarithm Angle Phase angle

Log10 Common Logarithm Complex Form complex number

Sqrt Square root Conj Conjugate

n
th

 root n
th

 root Real Real part

Sin Sine Imag Imaginary part

Cos Cosine i -1

2.1.3 WORKSPACE

 To list the variables, including ans, in the workspace type who and

then press enter

>> who

Your variables are:

a ans b x y

To see the size of the current variables, we can use whos, which gives

>> whos

Name Size Bytes Class

a 1 x 1 16 Double array (complex)

ans 1 x 1 8 Double array

b 1 x 1 8 Double array

x 1 x 1 8 Double array

y 1 x 1 8 Double array

Grand total is 5 elements using 48 bytes

The amount of remaining free memory depends on the total amount

available in the system and varies from computer to computer.

Unnecessary variables can be erased from memory using the clear

command. When we exit MATLAB using the quit or exit, all the

variables are automatically erased.

2.2 VECTORS

2.2.1 ROW VECTOR OF ARBITRARY ELEMENTS

 A row vector of arbitrary elements, such as [2 7 0 1 5] can be

defined by

>>a = [2 7 0 1 5]

a =

2 7 0 1 5

It creates a 1 x 5 vector and assigns it to the variables 'a'. The elements

have to be separated by spaces or commas like a = [2, 7, 0, 1, 5].

Individual elements of a vector can be accessed by enclosing their

subscripts in parenthesis.

For example, a(3) will be 0 and a(2) is assigned 7. Subscripts always

start with a 1 in MATLAB.

>> a (3)

ans =

0

>> a(2)

ans =

7

We can expand the vector by adding additional elements,

For example,

>>a(6) = 3

a =

2 7 0 1 5 3

will add 6
th

 element to a

>> a(8) = 4

a =

2 7 0 1 5 3 0 4

will not only add on 8
th

 element but also include 0 as 7
th

 element by

default.

A new expanded matrix can be formed by using concatenation. For

example

>> c = [12 15];

>> d = [a c]

d =

2 7 0 1 5 3 0 4 12 15

will give a new 1 x 2 vector c to previously defined 1 x 8 vector c to

create a 1 x 10 vector d.

2.2.2 ROW VECTOR OF EQUALLY SPACED ELEMENTS

A vector of equally spaced elements can easily be created by using the

most frequently used and very powerful colon (: operator.

>>b = 3 : 2 : 11

b =

3 5 7 9 11

Creates a 1 x 5 vector and assigns it to the variable b.

The middle number defines the increment i.e., 2.

>> c = 0 : 10

c =

0 1 2 3 4 5 6 7 8 9 10

will generate a 11 element vector c with a default unity spacing between

elements. The first, middle and last numbers can also be fractions.

>> n = 0.1 : 0.1 : 0.5;

will result in 41 – element raw vector, with initial value of 0.1 an

increment of 0.01 and final value of 0.5.

>> t = 0.5 : -0.1 : 0.2

t =

0.5000 0.4000 0.3000 0.2000

The increment can also be a negative number.

 A partial list of elements in a vector can be seen using the subscript

rotation and the colon operator as

>> t (2 : 3)

ans =

0.4000 0.3000

2.2.3 COLUMN VECTOR OF ARBITRARY ELEMENTS

The following are various methods of creating the column vectors

>> a = [1 2 3];

>> b = a
1

Creates a 3 x 1 column vector, by transposing the row vector

'a' as

b =

1

2

3

If the elements in a row vector are separated by semicolons as in

>> c = [1; 4; 6]

c =

1

4

6

a 3x1 column vector is created, here c (2) = 4 and c(3) = 6.

Expansion of column vector can also be done by concatenation

>>d = [b; c]

d =

1

2

3

4

5

6

After vector c has been concatenated to vector b then the resultant vector

is d is a 6x1 column vector.

2.2.4 COLUMN VECTOR OF EQUALLY SPACED ELEMENTS

 A column vector of equally spaced elements can be created using

the transpose operator as

>> t = [0 : 2 ; 10]
1

t =

0

2

4

6

8

10

2.2.5 OPERATIONS ON VECTORS

Let us consider two simple vectors

a = [5 2 1 4 3] b = [8 6 7]

The results of each specified operations on one of the above vectors are

SOME MATLAB COMMANDS RELATED TO VECTORS

MATLAB

FUNCTION
MEANING EXAMPLE

Min Smallest element Min (a) = 1

Max Largest element Max (b) = 8

Length Total number of elements Length (b) = 3

Sum Sum of all elements Sum (b) = 21

Prod Product of all elements Prod (a) = 120

Mean Average value Mean (a) = 3

Std Standard deviation Std (a) = 1.5811

Median Median value Median (b) = 7

Some more operations on vectors are

Sorting Operation

>> sort (a, 'descend')

ans =

5 4 3 2 1

If we simply type sort (a), the elements will be, by default sorted in

ascending order.

Addition Operation

To add the two vectors a and b, their sizes to be same.

>>a + b

? ? ? Error using = = > plus

Matrix dimensions must agree

The length of vector b can be made equal to length of vector a by

concatenation method

Example:

>> c = [0 0];

>> b

8 6 7

>> bnew = [b c]

8 6 7 0 0

>> a = [5 2 1 4 3]

a =

5 2 1 4 3

>> d = a + bnew

d =13 8 8 4 3

Array Power Operation

All the elements of a vector can be raised to a power using the array

power (.^) operator of MATLAB.

Example:

>> a = 1 : 7

a =

1 2 3 4 5 6 7

>> b = a .^ 2

b =

1 4 9 16 25 36 49

Array Multiplication Operation

 The element by element multiplication of two vectors can be done

using the array multiplication operation let us multiply the two vectors a

and d, in the addition example, to get the following result.

>> a . * d

ans =

65 16 8 16 9

This operation is used very frequently and it has three different names:

inner product, scalar product on dot product. Removing the 'dot' in above

expression will result in an error due to mismatch in the dimensions. We

can do the multiplication by transposing d vector or a vector.

>> a * d
1

ans =

1 1 4

>> a
1
 * d

ans =

65 40 40 20 15

26 16 16 8 6

13 8 8 4 3

52 32 32 16 12

39 24 24 12 9

2.3 MATRICES

Matrix operations are most fundamental to MATLAB. We can enter

matrices in several ways.

 Enter an explicit list of elements

 Load matrices from external data files, using the 'load' command.

 Generate matrices using built-in functions.

The elements of a row are to be separated with blank or commas.

A semicolon is used to indicate the end of each row. The entire list is

surrounded by square bracket [].

A matrix can be entered by typing an explicit list 1 elements row

by row.

>> a = [1 2 3; 4 5 6; 7 8 9]

a =

1 2 3

4 5 6

7 8 9

Creates a 3x3 matrix and assigns it to a variable a. Individual elements

can be referred by using parentheses. For example a(2, 3) refers to the

element in the 2
nd

 row and 3
rd

 column and a(3, 2) will be 8.

>> a (2, 3)

ans =

6

>> a (3, 2)

ans =

0

Matrices can also be generated by using special built-in functions.

MATRIX FUNCTIONS OF MATLAB

Eye Identity matrix

Zeros Matrix of Zeros

Ones Matrix of Ones

Diag Diagonal Matrix

Rand Matrix with random elements

Trice Upper triangular part of a matrix

Tril Lower triangular part of a matrix

Magic Magic square matrix

Size Size of matrix

Length Length of vector

Sum Sum of elements

Inv Inverse of matrix

Eig Eigen value

Rank Rank of matrix

Det Determinant of matrix

Norm Norm of matrix

Poly Characteristic polynomial

Trace Trace of matrix

Prod Product of elements

Mean Average value

Example

>> b = eye (3)

b =

1 0 0

0 1 0

0 0 1

Creates a 3x3 identity matrix

>> c = rand (4, 6)

c =0.4565 0.6154 0.1763 0.4103

 0.8132 0.1987

0.0185 0.7919 0.4057 0.8936

 0.0099 0.6038

0.8214 0.9218 0.9355 0.0579

 0.1389 0.2722

0.4447 0.7382 0.9169 0.3529

 0.2028 0.1988

Generates a 4x6 matrix of random numbers between 0 and 1.

>> d = ones (4, 3)

d =

1 1 1

1 1 1

1 1 1

1 1 1

Creates a 4x3 matrix of elements which are all ones.

>> e = zeros (3, 6)

e =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Creates a 3x6 matrix of elements which are all zeros.

2.3.1 OPERATIONS ON MATRICES

Size:The size of a matrix can be known using the size command [M, N] =

size (X), for an M-by-N matrix X, returns the two-element row vector D

= [M, N].

Containing the number of rows and columns in the matrix, for example

>> e = zeros (3, 6);

>> [M, N] = size (e)

M =

3

N =

6

 Generating more than one output, with the execution of a single

command, is one of the distinguishing features of MATLAB. In this

case, it produced two output M & N, which can be used, for example in

loops.

Sum, Transpose and Diagonal

 Let us create a 3x3 magic square matrix, for example, which has

some interesting properties. The command magic (N) generates as NxN

square matrix which has all the integers, from 1 to N
2
. The sum of all the

elements, along each row, each column and also along each of the two

diagonals is equal is known as magic square.

>> a = magic (3)

a =

8 1 6

3 5 7

4 9 2

The above example generates a 3x3 square matrix. It has all different

integers from 1 to 9. The command sum calculates the sum of elements

in each column.

>> sum (a)

ans =

15 15 15

The command diag extracts the principle diagonal.

>> diag (a)

ans =

8

5

2

>>sum (diag (a))

ans =

15

The sum of diagonal elements is 15. Let us transpose the matrix to

interchange row and columns to recalculate the sum of each row of

matrix a, which is now the column of matrix b.

>> b = a
1

b =

8 3 4

1 5 9

6 7 2

>> sum (b)

ans =

15 15 15

MATLAB doesn’t have a special function to extract the anti-diagonal

elements. But it provides a very useful function fliplr to turn the matrix

from left to right, which in turn converts the anti-diagonal to principle

diagonal. Now, we can calculate its sum easily.

>> c = fliplr (a)

c =

6 1 8

7 5 3

2 9 4

>> diag (c)

ans =

6

5

4

We have extracted the anti-diagonal of the original matrix a.

>> sum (diag (c))

ans =

15

 The unique feature of the magic square matrix is the of its elements

of each row, each column, principle diagonal and anti-diagonal is same.

Thus, it is called a magic square matrix.

Determinant and Inverse

 The command det(x) finds the determinant of the square matrix x.

Let us calculate the determinant of the magic square matrix.

>> det (a)

ans =

-360

 Since, the determinant is non-zero, the matrix can be inverted. Let

us now calculate its inverse, using the command inv.

>> inv (a)

ans =

0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056

-0.0194 0.1889 -0.1028

 The above result can be verified whether it is correct or not, from

the knowledge that the multiplication of a matrix with its inverse should

result in an identity matrix.

(a. a-1
 = I)

>> inv (a) * a.

ans =

1.0000 0 -0.0000

0 1.0000 0

0 0.0000 1.0000

The appearance of 0, 0.0000 & -0.0000 at the above stage are all

same, it is because of finite precision of the processor being used in

the computer.

Multiplication By A Scalar

 Each element of a matrix can be multiplied by a scalar. Let us

multiply each element of the 3x3 magic square matrix by 2.

>> a = magic (3)

a =

8 1 6

3 5 7

4 9 2

>> b = 2*a

b =

16 2 12

6 10 14

8 18 4

Matrix Addition

 Since, the above matrices a & b are of same dimensions, we can

add them, element by element, with simple expression like a + b.

>> c = a + b

c =

24 3 18

9 15 21

12 27 6

2.3.2 SUB MATRICES

 A portion of the matrix can be extracted using the most powerful

colon operator of MATLAB. Now, consider the example of 4x5 matrix

of random elements for the study of sub-matrices.

>> a = rand (4, 5)

a =

0.4103 0.8132 0.1987 0.0153

 0.0460

0.8936 0.0099 0.6038 0.7468

 0.4186

0.0579 0.1389 0.2722 0.4451

 0.8462

0.3529 0.2028 0.1988 0.9318

 0.5252

The 2
nd

, 3
rd

 & 4
th

 columns of the matrix can be extracted by the following

command.

>> a (: , 2 : 4)

ans =

0.8132 0.1987 0.0153

0.0099 0.6038 0.7468

0.1389 0.2722 0.4451

0.2028 0.1988 0.9318

The colon by itself refers to all the elements in a row or column a matrix.

Similarly the 3
rd

 and 4
th

 rows and all columns of the matrix can be

extracted.

>> a (3 : 4, :)

ans =

0.0579 0.1389 0.2722 0.4451

 0.8462

0.3529 0.2028 0.1988 0.9318

 0.5252

The command a(2 : 3, 2 : 4) takes out the elements in the 2
nd

 to 3
rd

 row

and 2
nd

 to 4
th

 columns.

>> a(2:3, 2:4)

ans =

0.0099 0.6038 0.7468

0.1389 0.2722 0.4451

NOTE:

 The rows or columns to be extracted need not be continuous. In

order to extract the element on the 1
st
 row and 4

th
 row of the 2

nd
 and 5

th

columns, we need to type the command using vector notation.

>> a([1 4], [2 5])

ans =

0.8132 0.4660

0.2028 0.5252

The keyword 'end' refers to the last row or column. For example,

>> a (end, :)

ans =

0.3529 0.2028 0.1988 0.9318

 0.5252

Extracts the last row of the matrix, the last column of the matrix with a (:,

end) command, can also be extracted. We can delete rows and columns

of a matrix using a null matrix, which is just an empty pair of square

brackets, for example, to delete the 3
rd

 column of matrix a, we can use

>>a (:, 3) = []

a =

0.4103 0.8132 0.0153 0.4660

0.8936 0.0099 0.7468 0.4186

0.0579 0.1389 0.4451 0.8462

0.3529 0.2028 0.9318 0.5252

The resultant matrix is now a 4x4 matrix, after 3
rd

 column has been

deleted.

2.3.3 LOOPS AND VECTORIZATION

 MATLAB provides two loop statement, the for loop & the while

loop, using which a group of statements can be repeatedly executed fixed

number of times, in a controlled fashion. It also has two flow control

statement, the if-else end and the switch-case, to control the flow of the

program. The break, return and continue commands are used in close

association with the loop and flow control statements to either terminate

the loop process or pas the control to the next iteration. We may be

tempted to write the MATLAB code the way we would write a program

in FORTRAN or C, in which case our code may be painfully slow.

Hence, it is strongly recommended not to do so. It is always better to

allow MATLAB to process the whole vectors or matrices at once rather

than using loops.

 The process of converting a for loop to vector function is referred

to as vectorization. The difference in processing time between a

vectorized code and a code that uses a for loop can be substantial. The

power of MATLAB is realized when the concept of vectorization is

utilized.

 Vectorized code takes advantage, wherever possible of operations

involving data stored as vectors. The only way to make MATLAB

programs run faster is to vectorized the algorithms we use in writing the

programs. While the total programming languages might use 'for loops'

or 'while loops', MATLAB can use vector or matrix operations. Although

loop statements are available in MATLAB, they should be sparingly used

because they are computationally inefficient. This can be proved by the

following example that involves creating a table of logarithms.

>>tic

>>x = 0.01;

>>for k = 1 : 1000

Y(k) = log 10(x);

X = x+0.01

End

>>toc

 The above code computer log 10(x) for 1000 value of x beginning

with 0.01 and incremented each time by the same value. It also measures

the total time taken for doing this job. Now, create a file consisting of the

above program and call it at the command prompt by typing the 'file

name' as otherwise the typing time also will be included, leading to

wrong results. When we run the above code, the following message is

displayed on the screen. Elapsed time is 0.062000 seconds.

A vectorized version of the same code is

>> tic

>> x = 0.01 : 0.01; 10;

>> y = long 10(x)

>> toc

Elapsed time is 0.031000 seconds.

 The vectorized version of the code takes just half the time and

hence is the most preferred way. Hence it is always advised to find a

vector function that will accomplish the same result as that of a for loop.

The processing time may be different in the computer, depending on the

processor configuration being used.

 The tic and toc functions determine the time taken to run a series of

commands in MATLAB and display the time in seconds, while tic starts a

stop watch times toc prints the elapsed time, since tic was used. These

two functions work together to measure elapsed time. We need to place

the entire MATLAB code, for which the execution time needs to be

measured between tic and toc.

2.4 PLOTTING GRAPHS

 MATLAB has excellent graphic capabilities for plotting graphs. It

provides simple but high level graphics commands for displaying data in

the form of line plots in rectangular and polar co-ordinates, bar and

histogram graphs, contour plots, mesh and surface plots in two and three

dimensions. In addition, precisely we can control color, shading, axis

labeling and the general appearance of graphs. MATLAB can also be

used for displaying several types of images such as indexed images,

intensive images and true color images, movies with animation cal also

be created.

 We can type the demo at the command prompt and select graphics

under the MATLAB option to see a visual demonstration of an extensive

set of demos in order to understand the graphic capabilities of MATLAB

for plotting 2-D graphs, in this section. The table shown below

summarizes a few frequently used graphics commands of MATLAB.

SOME GRAPHICS COMMANDS OF MATLAB

MATLAB COMMAND EXPLANATION

Plot (x, y) Plots vector y versus vector x

Stem (x, y) Discrete sequence or ‘stem’ plot

Sub Plot (m, n, p)

Divides the graph into m-by-n portions,

selects the p-th portion for current

plot

Bar (x) Bar graph of a vector or matrix

Hist (x) Histogram of elements of vector x.

Axis ([xmin. Xmax. Ymin.

Ymax])
Sets scaling for x - & y- axis

X label (‘text’) Adds a label to x – axis

Y label (‘text’) Adds a label to y – axis

Legend (‘text’) Displays a legend on the current graph

Title Adds a title to the current graph.

Grid
Adds a major grid lines to the current

axis.

Log log (x, y)
Plots xy graph using log scale for x & y

axes

Semi log x (x, y) Plots xy graph using log scale for x axis

Semilog y (x, y) Plots xy graph using log scale for y axis

2.4.1 CREATING A PLOT

 Let us create, for example, a line graph of Sin(t) and Cos(t) for all t

values ranging between 0 to 2 , with an increment of /100. We can use

the notation to create a row vector t of equally spaced elements.

>> t = 0 : pi/100 : 2 * pi;

 We can check the length of this vector to be 201. Now, without

using the loop statements, we can find Sin(t) & Cos (t), with the help of

vectorization.

>> x = Sin (t);

>> y = Cos (t);

 The MATLAB function Sin calculates Sin (t) for each element of

vector t to create the vector x of 201 elements. Similarly, the vector y

will have 201 Cosine values of the elements of t. Now, we have to plot

the two vectors x & y with respect to t, which can be easily done by using

the plot command.

>> plot (t, x, t, y);

 A new figure window, named 'figure 1' by default, will be opened,

consisting of one cycle of Sine & Cosine waves.

 MATLAB automatically selects appropriate colors, axis ranges,

tick mark locations etc. If the figure is not displayed or printed in color,

both the curves will be in black. Hence, it is better to change the line

style by changing the plot command parameters to distinguish them.

>> plot (t, x, '-', t, y, '-');

 The Cosine curve is plotted using the dashed line to know about

the available options for line types, plot symbols and colors seek help on

the plot command.

 We can also add an appropriate legend to each curve, by using the

legend command.

>> lengend ('Sin', 'Cos');

 We can see the changes happening, in the figure window, with

each of these commands. Let us now add a label to x & y axes, adjust the

scale of x-axis from 0 to 2 , & that of y-axis from -1 to 1, add grid lines

and also a title to the graph, using the following commands.

>> x label (4)

>> y label ('Sin (t), Cos (t)');

>> axis ([0 2 * pi – 11]);

>> grid

>> title ('Sine and Cosine plot from 0 to 2/pi');

 The back slash (1) in front of pi, in the title command allows the

Greek Symbol to be inserted in the title for more information on the

above topic under 'annotating graphs' within the 'graphics' option.

2.4.2 CREATING A SUB PLOT

 Plot x & y on two separate plots, by dividing the graphic space into

two portions, which can be done by the sub plot command, it is assumed

that the vectors t, x, y are already generated earlier.

>> sub plot (2, 1, 1);

 This command divides the graphic space into 2 parts & select the

first portion for the current plot.

>> plot (t, x, ' : ');

 This plots the Sine Curve as a dotted line in the reserved space.

The commands given below will give the graph appropriately.

>> x label (4’);

>> y label (‘Sin (t)’);

>> title (‘Cosine plot from 0 to 2/Pi’);

>> axis ([0 2 * Pi -1 1]);

 The below figure shows the final appearance of the Sine & Cosine

curves plotted separately.

2.4.3 CREATING A STEM PLOT

 The MATLAB command stem displays the discrete sequence or

stem plot. Replace the command plot by stem in any of the previously

discussed Sine & Cosine MATLAB codes & observe the changes that

occur for example, run the following to obtain stem plot of Sine wave.

The increment is now Pi/10, instead of Pi/100.

>> t = 0 : Pi / 10 : 2 * Pi;

>> x = Sin (t);

>> Stem (t, x);

>> axis ([0 2 * Pi -1 1]);

2.4.4 CREATING A BAR GRAPH

 Bar graphs are suitable for displaying discrete data. By default, a

bar graph represents each element in a matrix as one bar. Each bar is

distributed along the x-axis, with each element in a column drawn at a

different location. All elements in a row are clustered around the same

location on the x-axis. Let us illustrate this with a simple example. Let

us plot a bar graph of the elements of a magic square matrix of 3x3

dimensions.

>> z = magic (3)

Z =

8 1 6

3 5 7

4 9 2

>> bar (2)

>> grid

 Observe from figure that the bars in group 1 on the x-axis

correspond to the elements [8 1 6] of the 1
st
 row of the matrix z.

The bars in groups 2 and 3 similarly correspond to the 2
nd

 and 3
rd

 row

elements of z.

2.4.5 CREATING A HISTOGRAM

 A histogram shows the distribution of data values. It counts the

number of elements within a range are displays each range as a

rectangular bin. The height of the bins represents the number of values

that fall within each range. Let us understand this concept with a simple

example. Let us create a 5000 elements vector x of randn numbers with

normal distribution by calling the random function of MATLAB and see

how all these elements are distributed using the histogram graph.

>> x = rand n

>> hist (x)

 Observe from figure that all the 5000 elements of vector x are

grouped into 10 bins, between -4 and +4 on the x-axis. Each vertical

rectangular bar is called a bin.

 This distribution of data resembles that a bell shaped curve, which

is expected of a normally distributed data. Note that the data range is

between -4 and +4. The height of the bins can be found as a row vector

using the following command.

>> N = hist (x)

N =

Columns 1 through 9

4 65 325 913 1474 1313 650 215 35

Column 10

6

 Hence we can conclude that there are just 4numbers in vector x,

whose value is close to -4, only 6 numbers which are close to +4 and the

largest group of 1474 numbers whose value is close to zero, etc

2.1. GENERATION OF UNIT IMPULSE

%Aim: Write a Program to generate UNIT IMPULSE

t=-5:0.01:5 ;

x1= 1.*(t==0);

x2= 0.*(t~=0);

x= x1+x2;

figure(1)

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('UNIT IMPULSE signal');

OUTPUT

2.2. GENERATION OF UNIT STEP

%Aim: Write a Program to generate UNIT STEP

t=-5:0.01:5 ;

x1= 1.*(t>=0);

x2= 0.*(t<0);

x= x1+x2;

figure(1)

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('UNITSTEP signal');

OUTPUT

2.3. GENERATION OF SQUARE WAVE

%Aim: Write a Program to generate square wave with frequency

"F=10Hz"

F = input('enter the frequency of square wave :');

T= 1/F ;

t=0:3*T/100:3*T ;

y= square(2*pi*F*t);

figure(1)

subplot(2,1,1)

plot(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('square wave signal');

subplot(2,1,2)

stem(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index n(sec.)');

ylabel('amplitude x(n)');

title('square wave sequence');

INPUT

enter the frequency of square wave : 10

OUTPUT

2.4.. GENERATION OF SAWTOOTH WAVE

%Aim: Write a Program to generate sawtooth wave with frequency

"F=2k Hz"

F = input('enter the frequency of sawtooth wave :');

T= 1/F ;

t=0:3*T/100:3*T ;

y= sawtooth(2*pi*F*t);

figure(1)

subplot(2,1,1)

plot(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('sawtooth wave signal');

subplot(2,1,2)

stem(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index n(sec.)');

ylabel('amplitude x(n)');

title('sawtooth wave sequence');

INPUT

enter the frequency of sawtooth wave : 2000

OUTPUT

2.5. GENERATION OF TRIANGULAR WAVE

%Aim: Write a Program to generate triangular wave with frequency "F=

1 MHz"

F = input('enter the frequency of triangular wave :');

T= 1/F ;

t=0:3*T/100:3*T ;

y= sawtooth(2*pi*F*t, 0.5);

figure(1)

subplot(2,1,1)

plot(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('Triangular wave signal');

subplot(2,1,2)

stem(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index n(sec.)');

ylabel('amplitude x(n)');

title('Triangular wave sequence');

INPUT

enter the frequency of triangular wave : 10000

OUTPUT

2.6. GENERATION OF SIN WAVE

%Aim: Write a Program to Generate sin wave with frequency "F=300

Hz"

F = input('enter the frequency of sin wave :');

T= 1/F ;

t=0:3*T/100:3*T ;

y= sin(2*pi*F*t);

figure(1)

subplot(2,1,1)

plot(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('sin wave signal');

subplot(2,1,2)

stem(t,y);

axis([min(t) max(t) min(y)-1 max(y)+1]);

xlabel('Time Index n(sec.)');

ylabel('amplitude x(n)');

title('sin wave sequence');

INPUT

enter the frequency of sin wave : 300

OUTPUT

2.7. GENERATION OF UNIT RAMP

%Aim: Write a Program to generate UNIT RAMP

t=-5:0.01:5 ;

x1= t.*(t>=0);

x2= 0.*(t<0);

x= x1+x2;

figure(1)

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('UNITRAMP signal');

OUTPUT

2.8. GENERATION OF SINC WAVE

%Aim: Write a Program to generate SINC wave

t=-5:0.1:5 ;

y= sinc(t)

figure(1)

subplot(2,1,1)

plot(t,y)

axis([min(t) max(t) min(y)-0.5 max(y)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('SINC signal');

subplot(2,1,2)

stem(t,y);

axis([min(t) max(t) min(y)-0.5 max(y)+0.5]);

xlabel('Time Index n(sec.)');

ylabel('amplitude x(n)');

title('SINC sequence');

OUTPUT

2.9. GENERATION OF SIGNAL

%Aim: Write a Program to generate fallowing signal

% x(t) = t+1 (-1<=t<0)

% = 1 (0<=t<1)

% = t (1<=t<2)

% = 2 (2<=t<3)

% = -t+5 (3<=t<5)

t=-2:0.01:6 ;

x1= (t+1).*(t>=-1 & t<0);

x2= 1.*(t>=0 & t<1);

x3= t.*(t>=1 & t<2);

x4= 2.*(t>=2 & t<3);

x5= (-t+5).*(t>=3 & t<=5);

x= x1+x2+x3+x4+x5;

figure(1)

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title(' signal x(t)');

OUTPUT

3.1 SIGNAL ADDITION

%Aim: Write a Program to perform addition i.e., x(t)=x1(t)+x2(t)

%x1(t)= cos(6t)

%x2(t)= cos(8t)

t= 0:pi/400:pi;

x1=cos(6*t);

x2=cos(8*t);

x= x1+x2;

figure(1)

subplot(3,1,1);

plot(t,x1);

axis([min(t) max(t) min(x1)-0.5 max(x1)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x1(t)');

title('signal 1:cosine wave of frequency 3/pi Hz');

subplot(3,1,2);

plot(t,x2);

axis([min(t) max(t) min(x2)-0.5 max(x2)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x2(t)');

title('signal 2:cosine wave of frequency 4/pi Hz');

subplot(3,1,3);

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x(t)=x1(t)+x2(t)');

title('RESULTANT SIGNAL :signal1+signal 2');

OUTPUT

3.2 SIGNAL MULTIPLICATION

%Aim: Write a Program to perform x(t)=x1(t).x2(t)

%x1(t)= cos(2t)

%x2(t)= cos(8t)

t= 0:pi/400:pi;

x1=cos(4*t);

x2=cos(8*t);

x= x1.*x2;

figure(1)

subplot(3,1,1);

plot(t,x1);

axis([min(t) max(t) min(x1)-0.5 max(x1)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x1(t)');

title('signal 1:cosine wave of frequency 2/pi Hz');

subplot(3,1,2);

plot(t,x2);

axis([min(t) max(t) min(x2)-0.5 max(x2)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x2(t)');

title('signal 2:cosine wave of frequency 4/pi Hz');

subplot(3,1,3);

plot(t,x);

axis([min(t) max(t) min(x)-0.5 max(x)+0.5]);

xlabel('TIME INDEX t(sec)');

ylabel('x(t)=x1(t).x2(t)');

title('RESULTANT SIGNAL :produst of signal1 & signal 2');

OUTPUT

2.3 SIGNAL SHIFTING

%Aim: Write a Program to generate x(t-t0) signal

% x(t) = t+1 (-1<=t<0)

% = 1 (0<=t<1)

% = t (1<=t<2)

% = 2 (2<=t<3)

% = -t+5 (3<=t<5)

t=-2:0.01:6 ;

x1= (t+1).*(t>=-1 & t<0);

x2= 1.*(t>=0 & t<1);

x3= t.*(t>=1 & t<2);

x4= 2.*(t>=2 & t<3);

x5= (-t+5).*(t>=3 & t<=5);

 x= x1+x2+x3+x4+x5;

 disp('the program will now ask for the amount of shift');

disp('enter a +ve number for delay & -ve number for advancement ');

t0= input('enter the desired amount of shift of the signal');

t_shift = t+t0;

x_shift = x;

a= min(min(t),min(t_shift));

b= max(max(t),max(t_shift));

subplot(2,1,1);

plot(t,x);

grid;

axis([a b min(x) max(x)+0.5]);

xlabel('time index t(sec)');

ylabel('x(t)');

title('original signal');

subplot(2,1,2);

plot(t_shift,x_shift);

grid;

axis([a b min(x) max(x)+0.5]);

xlabel('time index t(sec)');

ylabel('x(t-t0)');

title('Time shifted signal');

INPUT

the program will now ask for the amount of shift

enter a +ve number for delay & -ve number for advancement

enter the desired amount of shift of the signal 5

OUTPUT

2.4 SIGNAL FOLDING

%Aim: Write a Program to generate x(-t) signal

% x(t) = t+1 (-1<=t<0)

% = 1 (0<=t<1)

% = t (1<=t<2)

% = 2 (2<=t<3)

% = -t+5 (3<=t<5)

t=-2:0.01:6 ;

x1= (t+1).*(t>=-1 & t<0);

x2= 1.*(t>=0 & t<1);

x3= t.*(t>=1 & t<2);

x4= 2.*(t>=2 & t<3);

x5= (-t+5).*(t>=3 & t<=5);

x= x1+x2+x3+x4+x5;

t_reverse = -fliplr(t);

x_reverse = fliplr(x);

a= min(min(t),min(t_reverse));

b= max(max(t),max(t_reverse));

subplot(2,1,1);

plot(t,x);

grid;

axis([a b min(x) max(x)+0.5]);

xlabel('time index t(sec)');

ylabel('x(t)');

title('original signal');

subplot(2,1,2);

plot(t_reverse,x_reverse);

grid;

axis([a b min(x) max(x)+0.5]);

xlabel('time index t(sec)');

ylabel('x(-t)');

title('Time Reversal signal');

OUTPUT

2.5 MATLAB CODE FOR FINDING ENERGY OF A SIGNAL

n=0:1:50;

x=(1/2).^n;

stem(n,x);

xlabel('n');

ylabel('x(n)');

title(' signal x(n)');

axis([0 25 0 1]);

disp('the calculated energy E of signal is');

E=sum(abs(x).^2)

disp('the theoretical energy of the signal is');

E_Theory=4/3

INPUT & OUTPUT

the calculated energy E of signal is

E =1.3333

the theoretical energy of the signal is

E_Theory =1.3333

 2.6 MATLAB CODE FOR FINDING POWER OF SIGNAL

N=input('type a value for N');

t=-N:0.001:N;

x=cos(2*pi*50*t).^2;

disp('the calculated power P of signal is');

P=sum(abs(x).^2)/length(x)

plot(t,x);

xlabel('time axis--->> n');

ylabel('x(n)');

title(' signal x(n)');

axis([0 0.1 0 1]);

disp('the theoretical power of signal is');

P_Theory=3/8

INPUT & OUTPUT

type a value for N 10

the calculated power P of signal is

P = 0.3750

the theoretical power of signal is

P_Theory = 0.3750

4.1 REAL SIGNAL DECOMPOSITION

%Aim: Write a Program to even component and odd component of signal

x(t)

% x(t) = 2 (0<t<=2)

% = 0 (elsewhere)

t=-4:0.01:4 ;

x1= 2.*(t>0 & t<=2);

x2= 0.*(t>2 & t<0);

x= x1+x2;

t_reverse = -fliplr(t);

x_reverse = fliplr(x);

x_even = (0.5)*(x + x_reverse);

x_odd = (0.5)*(x - x_reverse);

a= min(min(t),min(t_reverse));

b= max(max(t),max(t_reverse));

 subplot(3,1,1);

plot(t,x);

grid;

axis([a b min(x) max(x)+0.5]);

xlabel('time index t(sec)');

ylabel('x(t)');

title('original signal');

 subplot(3,1,2);

plot(t,x_even);

grid;

axis([a b min(x_even)-0.5 max(x_even)+0.5]);

xlabel('time index t(sec)');

ylabel('xe(t)');

title(' Even component of signal x(t)');

 subplot(3,1,3);

plot(t,x_odd);

grid;

axis([a b min(x_odd)-0.5 max(x_odd)+0.5]);

xlabel('time index t(sec)');

ylabel('xo(t)');

title(' Odd component of signal x(t)');

OUTPUT

4.2 COMPLEX SIGNAL DECOMPOSITION

%Aim: Write a Program to conjugate even component and conjugate odd

component of signal x(t)

% x(t) = exp((-1+j2pi)t)

clc;

close all;

clear all;

t=-2:0.05:2 ;

x=exp((-0.8+j*2*pi).*t);

 x_conj_rev = fliplr(conj(x));

x_conj_even = (0.5)*(x + x_conj_rev);

x_conj_odd = (0.5)*(x - x_conj_rev);

 figure(1)

subplot(4,1,1);

stem(t,real(x));

grid;

xlabel('time index t(sec)');

ylabel('Real(x(t))');

title('real values of original signal');

subplot(4,1,2);

stem(t,imag(x));

grid;

xlabel('time index t(sec)');

ylabel('Imag(x(t))');

title('imaginary values of original signal');

 subplot(4,1,3);

stem(t,abs(x));

grid;

xlabel('time index t(sec)');

ylabel('Mag(x(t))');

title('magnitude values of original signal');

 subplot(4,1,4);

stem(t,angle(x));

grid;

xlabel('time index t(sec)');

ylabel('phase(x(t))');

title('phase values of original signal');

figure(2)

subplot(4,1,1);

stem(t,real(x_conj_even));

grid;

xlabel('time index t(sec)');

ylabel('Real(conj.even x(t))');

title('real values of conjugate even signal');

 subplot(4,1,2);

stem(t,imag(x_conj_even));

grid;

xlabel('time index t(sec)');

ylabel('imag(conj.even x(t))');

title('imaginary values of conjugate even signal');

 subplot(4,1,3);

stem(t,abs(x_conj_even));

grid;

xlabel('time index t(sec)');

ylabel('Mag(conj.even x(t))');

title('magnitude values of conjugate evensignal');

 subplot(4,1,4);

stem(t,angle(x_conj_even));

grid;

xlabel('time index t(sec)');

ylabel('Phase(conj.even x(t))');

title('phase values of conjugate even signal');

 figure(3)

subplot(4,1,1);

stem(t,real(x_conj_odd));

grid;

xlabel('time index t(sec)');

ylabel('Real(conj.odd x(t))');

title('real values of conjugate odd signal');

 subplot(4,1,2);

stem(t,imag(x_conj_odd));

grid;

xlabel('time index t(sec)');

ylabel('imag(conj.odd x(t))');

title('imaginary values of conjugate odd signal');

 subplot(4,1,3);

stem(t,abs(x_conj_odd));

grid;

xlabel('time index t(sec)');

ylabel('Mag(conj.odd x(t))');

title('magnitude values of conjugate odd signal');

 subplot(4,1,4);

stem(t,angle(x_conj_odd));

grid;

xlabel('time index t(sec)');

ylabel('phase(conj.odd x(t))');

title('phase values of conjugate odd signal');

OUTPUT

5. CONVOLUTION

%Aim: Write a Program to perform convolution of two signals x(t) and

h(t)

% x(t) = 1 ,0<=t<=1

% = 0 ,elsewhere

% h(t) = 1 ,1<=t<=2

% = 0 ,elsewhere

clc;

close all;

clear all;

t1=-1:0.01:2 ;

x1= 1.*(t1>=0 & t1<=1);

x2= 0.*(t1<0 & t1>1);

x= x1+x2;

figure(1)

plot(t1,x);

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('signal x(t)');

 t2=-1:0.01:3 ;

h1= 1.*(t2>=1 & t2<=2);

h2= 0.*(t2<1 & t2>2);

h= h1+h2;

figure(2)

plot(t2,h);

axis([min(t2) max(t2) min(h)-0.5 max(h)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude h(t)');

title('signal h(t)');

 a=min(t1)+min(t2);

b=max(t1)+max(t2);

t3=a:0.01:b;

y=conv(x,h);

figure(3)

plot(t3,y);

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude y(t)');

title('convolution of x(t) and h(t)');

OUTPUT

6.1. AUTO CORRELATION

%Aim: Write a Program to perform auto correlation x(t)

% x(t) = 1 ,0<=t<=1

% = 0 ,elsewhere

clc;

close all;

clear all;

t1=-1:0.01:2 ;

x1= 1.*(t1>=0 & t1<=1);

x2= 0.*(t1<0 & t1>1);

x= x1+x2;

figure(1)

plot(t1,x);

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('signal x(t)');

 t2=-fliplr(t1);

 a=min(t1)+min(t2);

b=max(t1)+max(t2);

 t3=a:0.01:b;

y=xcorr(x,x);

figure(2)

plot(t3,y);

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude y(t)');

title('Autocorrelation of x(t)');

OUTPUT

6.2. CROSS CORRELATION

%Aim: Write a Program to perform cross correlation of two signals x(t)

nad h(t)

% x(t) = 1 ,0<=t<=1

% = 0 ,elsewhere

% h(t) = 1 ,1<=t<=2

% = 0 ,elsewhere

clc;

close all;

clear all;

t1=-1:0.01:2 ;

x1= 1.*(t1>=0 & t1<=1);

x2= 0.*(t1<0 & t1>1);

x= x1+x2;

figure(1)

plot(t1,x);

axis([min(t1) max(t1) min(x)-0.5 max(x)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude x(t)');

title('signal x(t)');

t2=-1:0.01:3 ;

h1= 1.*(t2>=1 & t2<=2);

h2= 0.*(t2<1 & t2>2);

h= h1+h2;

figure(2)

plot(t2,h);

axis([min(t2) max(t2) min(h)-0.5 max(h)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude h(t)');

title('signal h(t)');

 t2_rev=-fliplr(t2);

a=min(t1)+min(t2_rev);

b=max(t1)+max(t2_rev);

t3=a:0.01:b;

y=xcorr(x,h);

figure(3)

plot(t3,y(:,1:701));

axis([min(t3) max(t3) min(y)-0.5 max(y)+0.5]);

xlabel('Time Index t(sec.)');

ylabel('amplitude y(t)');

title('crosscorrelation of x(t) and h(t)');

OUTPUT

7.1. LINEARITY PROPERTY OF SYTEM

Aim: Write a Program to verifiy the linearity property of a system

clc;

close all;

clear all;

N=input('enter the number of samples which are assigned for x1 & x2 ');

x1=input('TYPE "N" number of SAMPLES For x1');

x2=input('TYPE "N" number of SAMPLES For x2');

a1=input(' The Scale factor a1 is');

a2=input(' The Scale factor a2 is');

x=a1*x1+a2*x2;

n=0:N-1;

y01=n.*(x.^2);

 y1=n.*(x1.^2);

y1s=a1*y1;

y2=n.*(x2.^2);

y2s=a2*y2;

y02=y1s+y2s;

disp('output sequence yo1 is ');disp(y01);

disp('output sequence yo2 is ');disp(y02);

if (y01 == y02)

disp('y01=y02. Hence The LTI system is LINEAR');

else

 disp('y01~=y02. Hence The LTI system is Non-LINEAR');

end;

INPUT

 enter the number of samples which are assigned for x1 & x2 6

TYPE "N" number of SAMPLES For x1 [2 1 3 -1 4 -2]

TYPE "N" number of SAMPLES For x2 [3 -2 0 1 -1 1]

The Scale factor a1 is 2

 The Scale factor a2 is 3

OUTPUT

output sequence yo1 is

 0 16 72 3 100 5

 output sequence yo2 is

 0 14 36 15 140 55

 y01~=y02. Hence The LTI system is Non-LINEAR

7.2. TIME INVARIANCE PROPERTY OF SYTEM

%Aim: Write a Program to verifiy the time invariant property of a system

clc;

close all;

clear all;

 x=input('TYPE THE SAMPLES OF x(n)');

n=0:length(x)-1;

y=n.*(x.^2);

disp('ENTER a positive number for delay');

d=input('Desired Delay of the signal is ');

 xd=[zeros(1,d),x];

nxd=0:length(xd)-1;

yd=nxd.*(xd.^2);

nyd=0:length(yd)-1;

xp=[x,zeros(1,d)];

yp=[zeros(1,d),y];

 figure(1)

subplot(2,1,1);

stem(nxd,xp);

grid;

xlabel('time index n');

ylabel('xp(n)');

title ('Original input signal xp(n)');

 subplot(2,1,2);

stem(nxd,xd);

grid;

xlabel('time index n');

ylabel('xd(n)');

title ('Delayed input signal xd(n)');

figure(2)

 subplot(2,1,1);

stem(nyd,yp);

grid;

xlabel('time index n');

ylabel('yp(n)');

title ('Delayed Output signal yp(n) is');

 subplot(2,1,2);

stem(nyd,yd);

grid;

xlabel('time index n');

ylabel('yd(n)');

title ('Output signal for delayed input is yd(n)');

 disp('Original input signal x(n) is ');disp(x);

disp('Delayed input signal xd(n) is ');disp(xd);

disp(' Delayed Output signal yp(n) is ');disp(yp);

disp(' Output signal for delayed input is yd(n) ');disp(yd);

 if (yp == yd)

disp('yp = yd. Hence The system is TIME INVARIANT');

else

 disp('yp ~= yd. Hence The system is TIME VARIANT');

end;

INPUT

TYPE THE SAMPLES OF x(n) [2 1 3 -1 4 -2]

ENTER a positive number for delay

Desired Delay of the signal is 3

OUTPUT

Original input signal x(n) is

 2 1 3 -1 4 -2

Delayed input signal xd(n) is

 0 0 0 2 1 3 -1 4 -2

 Delayed Output signal yp(n) is

 0 0 0 0 1 18 3 64 20

 Output signal for delayed input is yd(n)

 0 0 0 12 4 45 6 112 32

yp ~= yd. Hence The system is TIME VARIANT

8.1 MATLAB CODE FOR UNIT IMPULSE RESPONSE OF LTI

SYSTEM

num=input('type the numerator vector');

den=input('type the denominator vector');

N=input('type the desired length of the output sequence N');

n=0:N-1;

imp=[1 zeros(1,N-1)];

h=filter(num,den,imp);

disp(' The impulse response of LTI system is');disp(h);

stem(n,h)

xlabel('time index n');ylabel('h(n)');

title('Impulse response of LTI system');

INPUT & OUTPUT

ALL ZERO SYSTEM

type the numerator vector [1 0.75 0.5 -0.25]

type the denominator vector 1

type the desired length of the output sequence N 10

 The impulse response of LTI system is

 Columns 1 through 10

 1.0000 0.7500 0.5000 -0.2500 0 0 0 0 0

0

ALL POLE SYSTEM

type the numerator vector 1

type the denominator vector [1 -0.9 0.81]

type the desired length of the output sequence N 50

The impulse response of LTI system is

Columns 1 through 10

1.0000 0.9000 0 -0.7290 -0.6561 -0.0000 0.5314 0.4783

0.0000 -0.3874

POLE-ZERO SYSTEM

Columns 1 through 10

1.0000 -1.6000 0.9600 1.7920 0.8192 -0.4915 -0.9175 -0.4194

0.2517 0.4698

8.2. MATLAB CODE FOR UNIT STEP RESPONSE OF LTI

SYSTEM

num=input('type the numerator vector');

den=input('type the denominator vector');

N=input('type the desired length of the output sequence N');

n=0:1:N-1;

u=ones(1,N);

s=filter(num,den,u);

disp(' The step response of LTI system is');disp(s);

stem(n,s)

xlabel('time index n');ylabel('s(n)');

title('Step response of LTI system');

INPUT & OUTPUT

ALL ZERO SYSTEM

type the numerator vector [1 0.75 0.5 -0.25]

type the denominator vector 1

type the desired length of the output sequence N 10

 The step response of LTI system is

Columns 1 through 10

1.0000 1.7500 2.2500 2.0000 2.0000 2.0000 2.0000 2.0000

2.0000 2.0000

ALL POLE SYSTEM

type the numerator vector 1

type the denominator vector [1 -0.9 0.81]

type the desired length of the output sequence N 10

 The step response of LTI system is

Columns 1 through 10

1.0000 1.9000 1.9000 1.1710 0.5149 0.5149 1.0463 1.5246

1.5246 1.1372

POLE ZERO SYSTEM

type the numerator vector [1 -2.4 2.88]

type the denominator vector [1 -0.8 0.64]

type the desired length of the output sequence N 10

 The step response of LTI system is

Columns 1 through 7

1.0000 -0.6000 0.3600 2.1520 2.9712 2.4797 1.5622 1.1427

1.3944 1.8642

8.3. MATLAB CODE FOR FREQUENCY OF RESPONSE OF LTI

SYSTEM

num=input('type the numerator vector');

den=input('type the denominator vector');

N=input('number of frequency points');

w=0:pi/N:pi;

H=freqz(num,den,w);

figure;

subplot(2,1,1);plot(w/pi,real(H));

xlabel('\omega /pi');ylabel('Amplitude')

title('Real part');

subplot(2,1,2);

plot(w/pi,imag(H));

xlabel('\omega /pi');ylabel('Amplitude')

title('Imaginary part');

figure;

subplot(2,1,1);

plot(w/pi,abs(H));

xlabel('\omega /pi');ylabel('Magnitude');

title('Magnitude spectrum');

subplot(2,1,2);

plot(w/pi,angle(H));

xlabel('\omega /pi');ylabel('Phase(radians)');

title('Phase Spectrum');

INPUT & OUTPUT

type the numerator vector [0.5 0 0.5]

type the denominator vector 1

number of frequency points 512

8.4. MATLAB CODE FOR FINDING THE STABILITY OF LTI

SYSTEM

num=input('type the numerator vector');

den=input('type the denominator vector');

[z,p,k]=tf2zp(num,den);

disp('Grain constant is');disp(k);

disp('zeros are at');disp(z);

disp('radius of zeros');radzero=abs(z)

disp('poles are at ');disp(p)

disp('radius of poles ');

radpole=abs(p)

if max(radpole)>=1

disp('ALL the POLES do not lie within the unit circle');

disp('Oooops........ the given LTI system is not a stable

sytem');

else

disp('ALL the POLES lie WITHIN the Unit circle');

disp('The given LTI system is a RELIABLE and STABLE

sytem');

end;

zplane(num,den)

title('pole-zero map of the LTI system');

INPUT & OUTPUT

POLE - ZERO SYSTEM

type the numerator vector[1 -2.4 2.88]

type the denominator vector[1 -0.8 0.64]

Grain constant is

 1

zeros are at

 1.2000 + 1.2000i

 1.2000 - 1.2000i

radius of zeros

radzero =

 1.6971

 1.6971

poles are at

 0.4000 + 0.6928i

 0.4000 - 0.6928i

radius of poles

radpole =

0.8000

0.8000

ALL the POLES lie WITHIN the Unit circle

The given LTI system is a RELIABLE and STABLE sytem

ALL POLE SYSTEM

type the numerator vector 1

type the denominator vector[1 0.9 -0.81]

Grain constant is

 1

zeros are at

radius of zeros

radzero =

Empty matrix: 0-by-1

poles are at

 -1.4562

 0.5562

radius of poles

radpole =

 1.4562

 0.5562

ALL the POLES do not lie within the unit circle

Oooops........ the given LTI system is not a stable sytem

9. MATLAB CODE FOR OBSERVING GIBBS PHENOMENON

figure(1);

t=-3:6/1000:3;

N=input('type the number of orthogonal signals');

c0=0;w0=pi;

y=c0*ones(1,length(t));

for n=1:N

 cn=(1/n*pi)*sin(n*pi/2);

 c_n=cn;

 y=y+cn*exp(j*n*w0*t)+c_n*exp(-j*n*w0*t);

end;

plot(t,y);

xlabel('time index t');

ylabel('x(t)');

title('Approximating a square signal by using 05 orthogonal

signals');

INPUT & OUTPUT

type the number of orthogonal signals05

type the number of orthogonal signals 10

type the number of orthogonal signals 100

type the number of orthogonal signals 1000

10. MATLAB CODE FOR COMPUTING THE DFT

clc;clear all;

f=100; Fs=1000;

Ts=1/Fs; N=1024;

n=[0:N-1]*Ts;

x=0.8*cos(2*pi*f*n);

figure;

plot(n,x);grid;

axis([0 0.05 -1 1]);

title('cosine signal of frequency f');

xlabel('time n (sec.)');ylabel('x(n)');

Xk=fft(x,N);

k=0:N-1;

figure;

Xmag=abs(Xk);

subplot(2,1,1);plot(k,Xmag);

title('Magnitude of fourier transform');

xlabel('frequency index k');ylabel('Magnitude');

subplot(2,1,2);plot(k,angle(Xk));grid;

title('Phase of fourier transform');

xlabel('frequency index k'); ylabel('phase');

OUTPUT

11.1. MATLAB CODE FOR DRAWING THE POLE ZERO MAP

IN S-DOMAIN

clc;clear all;

num = input ('type the numerator polynomial vector');

den = input(' type the denominator polynomial vector');

H=tf(num, den)

[p,z]=pzmap(H);

disp(' zeros are at');disp(z)

disp(' poles are at');disp(p)

figure;

pzmap(H)

[r,p,k]=residue(num,den);

disp('PFE COEFFICIENTS ');disp(r);

disp('GAIN CONSTANTS IS ');disp(k);

if max(real(p))>=1

disp('ALL poles DONOT LIE in the Left Half of S-plane');

disp(' Ooops.... The given LTI system is NOT a stable

system');

Else

disp('All the POLES lie in the Left half of S-plane');

disp('The given LTI system is a STABLE system');

end;

figure;

t=0:0.1:5;

h=impulse(H,t);

plot(t,h)

xlabel('t');ylabel('h(t)');

title('Impulse Response of the LTI system');

INPUT & OUTPUT

type the numerator polynomial vector[1 -2 1]

 type the denominator polynomial vector[1 6 11 6]

 Transfer function:

 s^2 - 2 s + 1

s^3 + 6 s^2 + 11 s + 6

 zeros are at

 1

 1

 poles are at

 -3.0000

 -2.0000

 -1.0000

PFE COEFFICIENTS

 8.0000

 -9.0000

 2.0000

GAIN CONSTANTS IS

11.2. MATLAB CODE FOR DRAWING THE POLE ZERO MAP

IN Z-DOMAIN

clc;clear all;

num = input ('type the numerator vector');

den = input(' type the denominator vector');

H=filt(num, den)

z=zero(H);

disp(' zeros are at');disp(z)

disp(' radius of zeros');radzero=abs(z)

[r,p,k]=residuez(num,den);

disp('poles are at ');disp(p)

disp('radius of poles');radpole=abs(p)

disp('PFE COEFFICIENTS ');disp(r);

disp('GAIN CONSTANTS IS ');disp(k);

figure;

zplane(num,den);

title('Pole-Zero Map of the LTI system in Z-plane');

if max(radpole)>=1

disp('All the POLES dont lie within the Unit Circle');

disp(' Ooops.... The given LTI system is NOT a stable

system');

else

disp('All the POLES lie WITHIN the Circle');

disp('The given LTI system is a REALIZABLE and

STABLE system');

end;

figure;

impz(num,den)

INPUT & OUTPUT

type the numerator vector [1 -1]

 type the denominator vector [1 1 0.16]

 Transfer function:

 1 - z^-1

1 + z^-1 + 0.16 z^-2

 Sampling time: unspecified

 zeros are at

 0

 1

 radius of zeros

radzero =

 0

 1

poles are at

 -0.8000

 -0.2000

radius of poles

radpole =

 0.8000

 0.2000

PFE COEFFICIENTS

 3

 -2

GAIN CONSTANTS IS

All the POLES lie WITHIN the Circle

The given LTI system is a REALIZABLE and STABLE system

13. GENERATION OF GAUSSIAN NOISE

clc;

clear all;

x1=randn(1,5000);

x2=randn(1,5000);

figure;

plot(x1,x2,'.')

title('scattered plot of Gaussian Distribution Random numbers');

x1=rand(1,5000);

x2=rand(1,5000);

figure;

plot(x1,x2,'.')

title('scattered plot of uniform Distribution Random numbers');

x3=rand(1,100000);

figure;

subplot(2,1,1);

hist(x3)

title('uniform Distribution ');

y=randn(1,100000);

subplot(2,1,2);

hist(y)

title('Gaussian Distribution');

ymu=mean(y);

ymsq=sum(y.^2)/length(y);

ysigma=std(y);

yvar=var(y);

yskew=skewness(y);

ykurt=kurtosis(y);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000

10000

15000
uniform Distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4
x 10

4 Gaussian Distribution

14. VERIFICATION OF SAMPLING THEOREM

clc; clear all;

t=-5:0.0001:5;

F1=3;F2=23;

x=cos(2*pi*F1*t)+cos(2*F2*t);

figure(1)

plot(t,x);

axis ([-0.4 0.4 -2 2])

xlabel('Time t(sec)')

ylabel('x(t)');

title('Continuous time signal : x(t)=cos(2\piF_1t)+cos(2\piF_2t)');

% CASE 1

Fs1=1.4*F2; ts1=1/Fs1;

n1=-0.4:ts1:0.4;

xs1=cos(2*pi*F1*n1)+cos(2*pi*F2*n1);

figure(2);stem(n1,xs1)

hold on; plot(t,x,'r:');

axis ([-0.4 0.4 -2 2]);hold off

xlabel('Time Sample (n)'),ylabel('Amplitude');

title('Discrete Time Signal ');

legend('Fs <@Fmax');

 % Case 2

Fs2=2*F2;ts2=1/Fs2;

n2=-0.4:ts2:0.4;

xs2=(cos(2*pi*F1*n2)+cos(2*pi*F1*n2)+cos(2*pi*F2*n2));

figure(3);

stem(n2,xs2)

hold; plot(t,x,'r:')

axis([-0.4 0.4 -2 2]);hold off

xlabel('Time Sample (n)')

ylabel('Amplitude');

title('Discrete Time Signal ');

legend('Fs=2Fmax');

% Case 3

Fs3=7*F2;

ts3=1/Fs3;

n3=-0.4:ts3:0.4;

xs3=(cos(2*pi*F1*n3)+cos(2*pi*F2*n3));

figure(4);

stem(n3,xs3);

 hold; plot(t,x,'r:')

axis([-0.4 0.4 -2 2]);hold off

xlabel('Time Sample (n)'),ylabel('Amplitude');

title('Discrete Time Signal ');

legend('Fs>2Fmax');

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time t(sec)

x
(t

)

Continuous time signal : x(t)=cos(2 F
1
t)+cos(2 F

2
t)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time Sample (n)

A
m

p
lit

u
d
e

Discrete Time Signal

Fs <@Fmax

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time Sample (n)

A
m

p
lit

u
d
e

Discrete Time Signal

Fs=2Fmax

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time Sample (n)

A
m

p
li
tu

d
e

Discrete Time Signal

Fs>2Fmax

10

20

30

40

50

60

15. REMOVAL OF NOISE BY AUTOCORRELATION / CROSS

CORRELATION

%REMOVAL OF NOISE BY AUTOCORRELATION / CROSS

CORRELATION

 clc;

N=100;

n=0: N-1;

dsnr=input('type desired SNR in dB');

x=sqrt(2)*sin((pi/5)*n);

figure(1);

stem(n,x);

grid

axis([0 50 -2 2])

xlabel('n'); ylabel('x(n)');title('Sinusoidal Signal x(n)')

px=var(x);

an=sqrt(px*(10^(-1)*dsnr/10));

w=sqrt(12)*(rand(1,N)-0.5);

w=w*an;

pn=var(w);

disp('The calculated SNR');

SNRdb=10*log10(px/pn);

figure(3);

stem(n,w);grid

axis([0 50 min(w) max(w)])

xlabel('n');ylabel('w(n)')

title('Random Noise Signal w(n)');

y=x+w;

figure(6);

subplot(2,1,1);

stem(n,y);grid

axis([0 50 min(y) max(y)])

xlabel('n');ylabel('y(n)=x(n)+w(n)');

title('Sinusoidal Signal Corrupted with Random Noise')

[ryy,lag] = xcorr(y,y,'unbiased');

subplot(2,1,2);

stem(lag,ryy);grid

axis ([0 50 -1.5 1.5])

xlabel('Lag Index 1’);ylabel(‘R_y_y(1)');

title('Autocorrelation Signal R_y_y(1)')

[rxx,lag]=xcorr(x,x);

figure(2);stem(lag,rxx);grid

axis([-20 20 min(rxx) max(rxx)])

xlabel('Lag Index 1');

ylabel('R_x_x(1)');

title('Autocorrelation Signal R_x_x(1)')

[rxw,lag]=xcorr(x,w);

figure(5);

stem(lag,rxw);grid

axis([-20 20 min(rxw) max(rxw)])

xlabel('Lag Index 1');

ylabel('R_x_w(1)');

title('Cross Correlation Between x(n) and w(n)')

[rww,lag]=xcorr(w,w);

figure(4)

stem(lag,rww);

grid

axis ([-20 20 min(rww) max(rww)])

xlabel('Lag Index ');

ylabel('R_w_w(1)');

title('Autocorrelation Signal R_w_w(1)')

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

n

x
(n

)

Sinusoidal Signal x(n)

-20 -15 -10 -5 0 5 10 15 20

-80

-60

-40

-20

0

20

40

60

80

100

Lag Index 1

R
xx

(1
)

Autocorrelation Signal R
xx

(1)

0 5 10 15 20 25 30 35 40 45 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

n

w
(n

)

Random Noise Signal w(n)

-20 -15 -10 -5 0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Lag Index

R
w

w
(1

)

Autocorrelation Signal R
w w

(1)

-20 -15 -10 -5 0 5 10 15 20

-4

-3

-2

-1

0

1

2

3

4

Lag Index 1

R
x
w

(1
)

Cross Correlation Between x(n) and w(n)

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

n

y
(n

)=
x
(n

)+
w

(n
)

Sinusoidal Signal Corrupted with Random Noise

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

Lag Index 1’);ylabel(‘R
yy

(1)

Autocorrelation Signal R
yy

(1)

16.EXTRACTION OF PERIODIC SIGNAL MASKED BY NOISE

USING CORRELATION

M=256;

n=0:M-1;

x=cos(16*pi*n/M)+sin(32*pi*n/M);

snr=input('Type the desired SNR');

px=var(x);

w=sqrt(12)*(randn(1,M)-0.5);

an=sqrt(px*(10^((-1*snr)/10)));

w=w.*an;

pn=var(w);

SNRdb=10*log10(px/pn);

y=x+w;

N=M/8;

L=floor(M/N);

 d=zeros(1,M);

for i=1:M

if rem(i-1,N)==0

d(i)=1;

end;

end;

cyd=ifft(fft(y,M).*fft(d,M))/M;

r=cyd*(M/L);

figure(1)

plot(n,x,'b');

axis([1 80 -3 3])

xlabel('‘n');

ylabel('x(n)');

title('periodic signal x(n)')

figure(2);

subplot(2,1,1);

plot(n,y,'r');

grid;

axis([1 96 -3 3])

xlabel('n');

ylabel('y(n)');

title('noisy signal y(n)')

subplot(2,1,2);

stem(n,d);

grid;

axis([1 96 -0.5 1.5]);

xlabel('n');

ylabel('d(n)');

figure(3);

plot(n,r,'k');

axis([1 80 -3 3])

xlabel('n');

ylabel('r(n)');

title(' extracted periodic signal r(n)')

figure(4);

plot(n,x,'b');hold on;

axis([1 80 -3 3])

plot(n,r,'r:'); hold off;

axis([1 80 -3 3])

legend('x(n)', 'r(n)')

10 20 30 40 50 60 70 80
-3

-2

-1

0

1

2

3

‘n

x
(n

)

periodic signal x(n)

10 20 30 40 50 60 70 80 90

-2

0

2

n

y
(n

)

noisy signal y(n)

10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

1.5

n

d
(n

)

10 20 30 40 50 60 70 80
-3

-2

-1

0

1

2

3

n

r(
n
)

 extracted periodic signal r(n)

10 20 30 40 50 60 70 80
-3

-2

-1

0

1

2

3

x(n)

r(n)

17. verification of Wiener khinchine relations

clc;

clear all;

Fs=100;

 t=0:1/Fs:10;

x=sin (2*pi*15*t)+sin(2*pi*30*t);

N=512;

X=fft(x,N);

 f=Fs*(0:N-1)/N;

power=X.*conj(X)/N;

figure(1)

plot(f,power)

title('power spectrum through fourier transform')

xlabel('frequency f');

 ylabel('power');

figure(2)

rxx=xcorr(x,x);

sxx=fft(rxx,512);

plot(f,abs(sxx))

title('fourier transform of autocorrelation')

xlabel('frequency f');

ylabel('abs(sxx)');

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120
power spectrum through fourier transform

frequency f

p
o
w

e
r

10 20 30 40 50 60 70 80 90

-2

0

2

n

y
(n

)

noisy signal y(n)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
x 10

4 fourier transform of autocorrelation

frequency f

a
b
s
(s

x
x
)

